Overcoming History through International Organizations – Historical Roots of EU Support and Euroscepticism

Kai Gehring
Overcoming History through International Organizations – Historical Roots of EU Support and Euroscepticism

Abstract

There is little causal evidence about deep-rooted sources of support for shifting power from nation-states to international organizations. Focusing on the European Union, this paper develops the hypothesis that citizens appreciate the role of international organizations in constraining member-states the more, the more negatively their region was historically affected by the actions of nation-states. For identification, I use the historically homogeneous regions of Alsace and Lorraine in France as a natural experiment. A municipal level geographical regression discontinuity design documents that more negative exposure led to persistently higher EU support in three important referenda and less success of Eurosceptic parties in parliamentary elections. This effect is not driven by linguistic differences, migration, socio-economic factors or public good provision, but linked to a stronger European identity. This stronger identity is neither explained by perceived economic benefits, nor comes at the expense of a weaker national or regional identity.

JEL-Codes: D700, F500, H700, N240.

Keywords: international organizations, nation-states, repression, persistence, group identity, European Union support, Euroscepticism, European identity.

Kai Gehring
University of Zurich / Switzerland
kai.gehring@pw.uzh.ch

April 2019
I thank Christian Bjornkov, Axel Dreher, Andreas Fuchs, Pauline Grosjean, Katharina Michaelowa, Marco Steenbergen and Stephanie Walter for detailed comments, as well as participants at Central European University, the University of Zurich, and at the EPCS Meeting in Jerusalem, the Beyond Basic Questions Workshop in Kiel, and the 2019 CESifo Summer Institute: Future of Europe in Venice. I thank Ulrich Doraszelski, Raphael Franck, Franz Zobl, Noel Johnson, Eunhye Kim and the département archives in Alsace and Lorraine for sharing data and verifying historical sources, and Lukas Willi, Nelson Mesker, Jan Gromadzki and Dante Povinelli for excellent research assistance. I acknowledge financial support from an Ambizione grant by the Swiss National Science Foundation (SNSF).
1 Introduction

With populism and tensions between and within nations being on the rise, understanding mechanisms to maintain peace and stability are of crucial importance. According to Russett, Oneal, and Davis (1998), there are three pillars of a Kantian perpetual peace. Representative democracy, economic interdependence, and in the modern era international organizations (IOs). IOs can facilitate peace by fostering economic cooperation and by constraining the actions of their member-states (McLaughlin Mitchell and Hensel 2007). Arguably the most ambitious and far-reaching of those international organizations in recent history is the European Union (EU), established after World War II in a continent that was for many centuries plagued by repeated conflicts. German Chancellor Konrad Adenauer saw the EU as “the modern antidote to nationalism” and French diplomat Jean Monnet saw it as a means to create a more peaceful Europe (Jolly 2015, p.1).

The EU enjoyed widespread success and little resistance until the treaty of Maastricht in 1992 (Moravcsik 1991). Still, the failure to convince voters in various national referenda, the rise of Eurosceptic parties, and finally the Brexit plan indicate that it is now facing deep problems. Attitudes towards and support for the EU are at the core of a large number of studies in political science and related disciplines, but they are mostly focusing on the effects of individual psychological or socio-economic attributes, or on contemporary domestic politics. There is little evidence about deep-rooted factors explaining the strong existing differences between countries and regions, and even the best existing studies about EU support or Euroscepticism (e.g., Gabel 1998; Hooghe and Marks 2005; Jolly 2007; Hobolt and De Vries 2016a) are of a correlational nature. This is why the review articles by Ciaglia, Fuest, and Heinemann (2018) and Hobolt and de Vries (2016b) explicitly highlight the need for more causal analyses on the underlying sources of existing differences in EU support.

I hypothesize and show that support for the EU as the over-arching level in the European governance model is influenced by the degree to which a region was negatively exposed to the actions of nation-states in the past. Like other IOs, I argue that the EU is perceived as constraining the actions of its member-states, which is valued differently depending on the respective histories of different regions. The most important aspect of regions negative histories with nation-states comprises suffering from conflicts between nation-states or from repressive policies by the nation-state. Prior research suggests that many regions with a history of tensions with nation-states also happen to be strong EU supporters (Jolly 2007; Keating 2000).

Nonetheless, it is hard to interpret this positive relationship, as prior quantitative
analyses lack suitable counterfactuals. Take the region Tyrol, for instance. Its Southern part was occupied and exposed to repressive nation-state policies by Italy after WWI. Today, it is described as an area that developed a strong European identity.\footnote{https://www.opendemocracy.net/en/can-europe-make-it/south-tyrol-from-secessionist-to-european-dreams, http://www.provinz.bz.it/news/de/news.asp?news_action=4&news_article_id=590314#accept-cookies, and https://kurier.at/politik/inland/suedtiroler-landesthauptmann-kompatscher-die-eu-als-groesseres-ganzes/306.514.568. Accessed 23.08.2019.} However, the counterfactual northern part remained in Austria, making it hard to causally attribute EU identity to negative exposure to nation-state actions. In Spain, Catalonia was clearly exposed to more nation-state repression during the Franco-era than most other regions, but it also differs from them in many other dimensions.

To solve this empirical challenge and provide convincing causal evidence, this paper analyzes the division of the historically homogeneous French-German border regions of Alsace and Lorraine. The regions were split after the Franco-Prussian war in 1870. The “treated” Eastern part was occupied by Germany until WWI, and became French again afterwards. The advantage of this natural experiment is that the treated part was clearly exposed more negatively to the actions of nation-states, both to conflict between nation-states and to repressive nation-state policies. It suffered from repressive policies during the German occupation and, until the 1950s, again from repressive policies as part of the reintegration into France. This case thus combines “treatments” that many other regions experienced in European history, but also provides a good counterfactual as we can observe both parts in the same region in France today.

To establish causality, I use a municipal level geographic regression discontinuity design at the former border dividing both parts. I show that the exact border location between the two areas does not follow (i.) the prior département borders, (ii.) any older historical border, (iii.) nor the historical linguistic border between French and German dialect speakers. The reason for this surprising decision were tensions between the political and military German leadership, which led to a division that was driven by pride rather than by strategic decisions, and ignored local circumstances. I corroborate these historical facts by showing that there are no discontinuities in a wide range of geographic and historical socio-economic pre-treatment measures.

The French context allows me to study EU support using three referenda about European integration, as well as using electoral support for Eurosceptic parties. I consistently find significantly higher agreement and lower Euroscepticism in the treated area that was more negatively exposed to nation-state actions. As in some parts the treatment and the historical language border coincide, I show that excluding areas that were formerly German-dialect speaking does not affect the result. To verify the causal interpretation of
the effect, I also conduct three placebo tests. First, I show that the differences I observe are not simply picking up the fact that border départements are different than more central départements. Second, I move the treatment border one département level further towards the center of the country to examine whether the results are driven by proximity to the next foreign country. Third, I consider possible pre-treatment differences by checking for a discontinuity at the pre-treatment border within Lorraine prior to 1870.

In the next step, I analyze potential mechanisms. I show that the differences in EU support and Euroscepticism are associated with a stronger European identity. These identity differences are not related to perceived monetary benefits of EU membership. There is no significant evidence in favor of other explanations like migration, socio-economic differences or public good provision, which could have been caused by the natural experiment. Robustness tests reveal that the higher European identity does not come at the cost of a lower national identity in the treated area, and even coincides with a stronger regional identity.

The paper mainly contributes to four strands of literature. First, the large and growing literature examining differences in EU support (e.g., Gabel 1998; Hooghe and Marks 2004; Marks and Steenbergen 2004; Sánchez-Cuenca 2000), Euroscepticism (e.g., De Vries 2018; Foos and Bischof 2019), and European identity (Buscha, Muller, and Page 2017; Capello 2018). While the existing literature has yielded many important insights, it has mostly focused on correlational evidence regarding individual level attributes or current domestic politics as explanatory factors. In comparison, this paper sheds light on a deep structural cause of existing differences.

Second, by considering attitudes and resistance towards shifting decision-making to the international level, I relate to the growing literature on regional integration (Schneider 2017) and on anti-globalist populism and opposition to multilateralism related to disintegration and Brexit (e.g., Becker, Fetzer, and Novy 2017). Moreover, my results help to better understand the political economy of international organizations (reviewed in Dreher and Lang 2019) and of the EU specifically (e.g., Gehring and Schneider 2018; Marks and Steenbergen 2004; Schneider 2013). In constructivist theories common identity allows the rise of diffuse instead of specific reciprocity (Hooghe, Lenz, and Marks 2019). A stronger salience of the fact that all Europeans suffered at some point and to some degree from the repeated wars of the prior centuries can lead to such a stronger sense of community. This piece of shared history can increase the acceptance of a multinational order that constraints national decision-making (cf. Sánchez-Cuenca 2000). Moreover, my findings suggest that national identities are not an obstacle to European integration, contrasting prior correlational work (Carey 2002; Fligstein, Polyakova, and Sandholtz 2012).
Third, my theoretical framework around the role of international organizations as constraining the political action space of their member-states relates to a growing literature (e.g., Carnegie and Carson 2018; Carnegie 2014; Schneider 2019, 2017). Prior research found, for instance, IOs to constrain national governments and reduce discrimination in public procurement (Rickard and Kono 2014). The EU can to some extent constrain national governments through its own legislation and decisions, and the European Court of Justice is an important mechanisms to solve disputes with member-states (Abbott et al. 2000).

Fourth, I relate to the literature on nationalism (e.g., Gellner and Breuilly 2008; Anderson and O’dowd 1999), the effects of repression (Rozenas and Zhukov 2019), the formation of common identities (Wendt 1994; Fouka, Mazumder, and Tabellini 2018) and the definition of a social identity (Shayo 2009). Prior studies have examined various factors that affect identity, from political competition (Eifert, Miguel, and Posner 2010), to institutional differences (Posner 2005), and military service (Mazumder 2018). Hooghe and Marks (2004; 2005) also study the effect of existing identities on EU support, but do not move beyond correlational evidence. This study contributes to the small number of papers exploiting plausibly exogenous variation caused by historical natural experiments to learn more about identity formation (Posner 2004; Depetris-Chauvin, Durante, and Campante 2019a; Dehdari and Gehring 2018; Fouka 2019). Similar to Becker et al. (2015), Grosjean (2014), Fouka and Voth (2016), and Mazumder (2018), I document that differences in historical exposure to specific events or historical periods can lead to persistent differences in political preferences even many years after the actual treatment ended.

The paper has the following structure. Section 2 provides the historical and theoretical background, and section 3 presents the data and identification strategy. Section 4 presents the main results, section 5 discusses the mechanisms, and section 6 the placebo and robustness tests. Section 7 concludes.

2 Theory and historical background

2.1 History, treatment period and border location

This section provides the necessary historical background and outlines why the exact location of the treatment border can be considered as quasi-random. The more general “treatment” I am interested in is a region’s exposure to the negative actions of nation-states. This can theoretically be all kind of actions, but historically among the two most important dimensions are conflicts between nation-states and repressive nation-state poli-
cies. Causal identification of this effect in a large panel of regions is extremely challenging, but prior studies indicate a correlation between a region having a problematic history with nation-states and higher EU support (e.g., Jolly 2007).

This paper does not propose a strategy to estimate a similar correlation in a large multi-region sample, but instead focuses on one specific historical natural experiment. Ensuring internal validity requires selecting the relevant time period in which nation-state actions are regarded as relevant, defining the relevant set of repressive policies across countries and periods, and finding exogenous variation and suitable counterfactuals for each region. Zooming into one specific case allows me to solve all these issues. First, the setting offers a clear difference in historical negative exposure to nation-state actions after a long shared history as homogeneous regions. Second, the quasi-random location of the treatment border allows me to estimate a causal effect in a geographical regression discontinuity (RD) design. Third, the treated and control area are observable in the same institutional environment today in France. There were three referenda on EU integration that I can study together with the electoral success of Eurosceptic parties, which also allow me to also track the temporal persistence of potential effects over time.

Figure 2 illustrates the relevant history of Alsace and Lorraine in a simplified way. Regarding the existence of a suitable counterfactual, it is most relevant that at the time of the Franco-Prussian War in 1870/71, the whole area had been French for more than a century. Both Alsace and Lorraine became autonomous political entities as far back as the 7th century. Under Charles the Bald, all of modern Lorraine and Alsace were united for the first time in the Duchy of Lotharingia. The duchy was then fully integrated into France in 1767. This means that, starting with Napoleon, the whole region experienced the same French nation-building policies and there are no reasons to expect systematic identity differences before the division.

The left-hand side of Figure 1 shows a map of the Alsace and Lorraine region prior to 1870. It displays the six former pre-1870 départements, as well as four major cities. The yellow border indicates the “treatment border” that was negotiated in 1871 between Germany and France in the Peace Treaty of Versailles ending the Franco-Prussian War. I refer to the left side, which always remained French, as the control area, and the right side as the treated area.
Most historians describe the Franco-Prussian war (July 19, 1870 to May 10, 1871) as an attempt by Otto von Bismarck, chancellor of Prussia, to unite all German states against the arch-enemy of France (Wawro 2005). Thanks to superior tactics and organization, the German army won the war surprisingly quickly and besieged Paris. The German negotiation position in the peace deal negotiations with newly-elected French leader Adolphe Thiès in Versailles was strong, but there was disagreement in the German leadership about its goals. The independent military leadership under the charismatic general Helmuth von Moltke favored territorial expansion (Förster 1990), and keeping the whole region of Alsace and Lorraine. Bismarck thought of this as a “major folly” and the potential source of a future war. If anything, he wanted to restrict expansion to the German-dialect speaking parts of Alsace and Lorraine (Lipgens 1964).

The negotiation process is described as being influenced by pride rather than by specific strategic considerations (Wawro 2005). For instance, while Bismarck was willing to hand over Metz and the surrounding areas, Moltke refused to return it as he considered this occupation a major military achievement. Bismarck, “quite uncharacteristically wilted under the pressure” (Wawro 2005, p.305), and the final border was a compromise decided upon centrally in Versailles, without taking account of local circumstances (Messerschmidt 1975). Figure 1 B.) shows that the treatment border (i.) does not follow the historical linguistic border between French an German dialect speakers, (ii.) does not follow the

Notes: Author’s depictions using ArcGIS and official administrative shapefiles. Linguistic border is digitized based on Harp (1998).
existing département borders, (iii.) nor any older historical border.\footnote{This was verified using various maps from different medieval periods.}

More specifically, large parts of Alsace, but not all, became the German districts of Oberelsass and Unterelsass, corresponding to the current French départements Haut-Rhin and Bas-Rhin. In Lorraine, the district Lothringen was created cutting right through the prior départements Moselle and Meurthe. It corresponds to today’s département Moselle. In the control area, France created the départements of Meurthe-et-Moselle, Meuse and Vosges.

The following decades, approximately 80 years, constitute the treatment period, during which the treated area clearly suffered more from the actions of nation-states. It remained German until WWI; afterwards, the “lost provinces” (Harvey 1999) were re-integrated into France. As historians describe in great detail, both periods were accompanied by a wide range of discriminatory and repressive nation-state policies in the treated part (e.g., Callender 1927; Carrol and Zanoun 2011). Table 1 describes examples of these policies in five categories, Table B.1 provides a comprehensive list.\footnote{All Tables and Figures starting with a letter in front of the number can be found in the online appendix.}

During WWII, both the treated and control area were occupied by Germany, but only eligible citizens from the treated area were forced to fight for the German army. After the war was over, these unfortunate soldiers – the so-called “malgré-nous” – were charged in the Bordeaux Trial for their actions by the French nation-state. There were massive protests against the trials in the treated area, mainly because the soldiers were perceived as being punished for something beyond their control. As a compromise, a far-reaching
amnesty on war participants settled the issue in 1953. This also marks the end of the treatment period. Since then, tensions calmed down and both parts of the region were exposed to the same policies as part of the same region in France.

Table 1: Overview of policy categories and examples

<table>
<thead>
<tr>
<th>Policy category</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language policies</td>
<td>1920: Teaching in local dialect forbidden (Grasser 1998).</td>
</tr>
<tr>
<td>Social, political, military freedom, equality</td>
<td>1927/28: Colmar trials: 15 prominent autonomists are arrested and tried for participation in a plot to separate Alsace from France (Goodfellow 1993).</td>
</tr>
<tr>
<td>Separation and segregation</td>
<td>1918: Locals are classified according to an identity-card system. Lower classification leads to e.g., travel bans (Harvey 1999).</td>
</tr>
<tr>
<td>Regional institutions and administrative personnel</td>
<td>1924: Ministerial Declaration by Premier Edouard Herriot imposes a centralized administration, French laws and intuitions (Carrol and Zanoun 2011).</td>
</tr>
</tbody>
</table>

Notes: Sources and full list of policies in Table B.1.

This setting has some limitations. First, external validity. There might be regions in Europe, which despite suffering from the actions of nation-states do not feature strong EU supporters. Still, the French-German border regions I examine are far from being exotic cases in European history. Their exposure as a European border region to war between nation-states and repression resembles many of the events other regions also had to endure during the last two centuries. Prior research shows a positive correlation between higher EU support and being in a border region (Gabel and Palmer 1995), and with citizens having a strong regional identity and perceiving their region in a struggle with the central nation-state (Jolly 2015). Moreover, regionalist parties, often present in regions with a history of tensions with the central state (Jolly 2007), largely exhibit a strong European identity throughout Europe.

Second, this historical experiment does not allow distinguishing whether potential effects are caused by suffering from conflicts between nation-states through conflict, occupation and switching nation-states, or by being exposed to specific repressive nation-state policies. However drawing on the examples of South Tyrol in Italy or Catalonia in Spain, being exposed negatively to nation-state actions of any of the two types seems positively correlated with EU support. Rozenas and Zhukov (2019) show that in former Soviet
Union, higher exposure to repression by the central Russian state leads to more political opposition against the nation-state, if the threat of retaliation is not too high.

2.2 Theoretical argument and related literature

I argue that avoiding conflict between nation-states and precautionary measures against repressive actions by nation-states should be of higher importance in areas more negatively affected by nation-state actions in the past. There are two main mechanisms, which are not necessarily mutually exclusive.

First, the treatment period might have affected socio-economic characteristics. Past research suggests, for instance, that richer and more educated citizens tend to be stronger EU supporters. If the treatment period caused differences in such dimensions, this could partly explain potential differences in EU support. There are some obvious potential candidates. German politics in the late 19th century was less centralized than France. The treated area, however, was actually governed as a protectorate directly under the supervision of the central state. The remaining religious and legal differences are of minor importance today, but they can affect certain aspects of business and private life. Finally, immigration could directly change social norms or the composition of the population.

Second, and my main hypothesis, an increased importance assigned to maintaining peace and avoiding discriminatory policies against specific regions should change the perceived net benefits of the EU, and translate into voting differences. Higher EU support can follow mechanically from being more concerned about the actions of nation-states in a model with voters as purely rational agents optimizing over their political preferences. Post-functionalist theories propose a different angle. They argue that a stronger sense of common identity increases the willingness of people to cooperate beyond national borders and support international governance. Against this background, I also explore whether the treated area exhibits a stronger European identity as a mechanism that helps to explain higher EU support.

My argument requires that the EU is credibly perceived as limiting the likelihood of conflict between its members and of discriminatory actions against specific groups or regions within nation-states. IOs, in this case the EU, can be regarded as a means for rational actors - the EU member-states - to engage in a governance contract, even if that means constraining their own choices in specific situations - e.g., how to handle tensions with other member-states or regions within the country (cf. Hooghe, Lenz, and Marks 2019). Generally, IOs can constrain the choice set of their member-states by setting conditions for access, and by setting up and enforcing rules for its members. Scholars emphasize
the importance of democratic rules (Pevehouse and Russett 2006) and the existence of sophisticated institutional structures (Boehmer, Gartzke, and Nordstrom 2004) to ensure that IOs can promote peace.

I argue that from the perspective of a region and a citizen in a region that had negative experiences with the central nation-state, the EU fulfills these criteria. Many studies describe how the EU has strengthened the role of regions, in particular those representing a national linguistic or ethnic minority, against the nation-states. Certain EU institutions, in particular the Committee of the Regions, allow regions to officially appeal decisions taken by nation-states. This allows “regions to identify and pursue interests divergent from those expressed [...] by the central institutions of their state” (Finck 2017, p.54) and “bypass national governments” (Jolly 2007) and ensure “the protection of regional cultures” (Panara 2019, p.13).

This aspect is reflected in official EU rules and treaties. The Treaty of the European Union (TEU) article 4(2) specifies respect for “regional and local self-government” and the EU’s Copenhagen Criteria from 1993 demand “respect for and protection of minorities”. The EU is also seen as having “the leverage to enforce commitments [...] for the protection of national minorities” (Galbreath and McEvoy 2012, p.279). The European Court of Justice plays a key role in that regard. After initial doubts about its legitimacy, scholars agree about its importance in restraining nation-states (Mattli and Slaughter 1995; Sweet and Brunell 2012). Garrett (1995, p.171) explains that “European law has supremacy over domestic laws and the court exercises judicial review [...] over the behavior of governments within their national boundaries”. For instance, the court ruled to protect the fiscal autonomy of regions in the landmark “Portugal v Commission” case. In the “Izsá-Dabas vs Commission” case, the court decided against the member states that an initiative aimed at improving the situation of national minority regions had to be allowed. Of course, EU institutions cannot fully control the actions of member states. For my argument it is sufficient that it is perceived as lowering the likelihood of conflicts between nation-states and of repressive policies against particular regions compared to a counterfactual without the Union.

Finally, this aspect is also salient with the relevant actors in the regions. The Council of European Municipalities and Regions recognizes how the EU has contributed to “respect for regional and local self-government as part of national identities”. Generally, regions and regional governments and parties perceive the EU “as an ally against the central state” (Jolly 2007). The Federal Union of European Nationalities, an interest group representing minority regions, emphasize the importance of the EU in protecting and promoting in minority regions. Its “Minority SafePack” initiative to protect minority languages and
cultures and promote cultural and linguistic diversity was, for instance, supported by South Tyrol and the Basque country. The Alsatian regionalist party “Unser Land” advertises a strong Alsace but embedded in the EU framework. Similarly, regional parties in Scotland and Catalonia perceive the EU as an ally against the respective central state.

Along with plenty of other recent studies, I assume that differences in historical exposure to certain events can lead to persistent differences in political and economic attitudes. These differences can persist through vertical transmission from parents to children, or through particular attributes, institutions or organizations that remain different over time. In the case of Alsace-Lorraine, both channels are plausible. In addition to vertical transmission, some institutional differences remain even today. Although actual legal differences associated with these so-called local laws became smaller and smaller over time, an emerging literature shows how historical events can be “reactivated” (e.g., Ochsner and Roesel 2017), and observable differences help in that regard. Thus, these local laws also serve the purpose of continuously highlighting the treated area’s specific history.

Finally, we can question whether these aspects are actually salient to citizens today. Historically, the peace project dimension of the European Union was always a salient political aspect. Jean Monnet, one of the founding fathers of the EU, famously described it as a process to “go beyond the concept of a nation,” and Konrad Adenauer, the first German chancellor after WWII, described it as an “antidote to nationalism.” Jolly (2015) describes that the constraints the EU imposes on member states are also recognized and relevant in regions with strong regionalist parties. Those are often the ones with a history of tensions with nation-states. More recently, the cases of Scotland and Catalonia illustrate the high hopes of citizens and regional parties in these regions about the European Union as a fair arbitrator. Even though these hopes were partly disappointed, it is sufficient that during my sample period enough people were aware of this aspect and believed the EU had some constraining effect.

Hence, my hypothesis is that the historical exposure to more negative actions by nation-states led to stronger EU support. I argue that it is plausible that the EU is perceived as constraining the actions of nation-states to some degree. There are two main potential mechanisms. First, the historical difference could have changed socio-economic aspects. Second, the effect was mostly related to a change in political preferences, possibly going along with a stronger European identity. After testing for causal differences in EU support, I will test whether I find evidence in favor of one or both of those mechanisms.

3 Identification and Data

3.1 Data

I use two main proxies for EU support, three referenda and electoral success of Eurosceptic parties, as well as different measures to capture mechanisms. Not covered here are details on controls, pre-treatment variables and socio-economic mechanisms, which can be found in the respective sections and the Online Appendix. Table A.1-A.5 provide all details and descriptive statistics. All measures are at the municipal level unless mentioned otherwise.

EU support – 1972 Referendum about the European Communities Enlargement: A referendum on the enlargement of the European Communities (EC) was held in France on 23 April 1972. Voters were asked whether they approved of Denmark, Ireland, Norway, and the United Kingdom joining the EC. The proposals were approved by 68.3% of voters in France, with a turnout of 60.2%. I compute agreement as the share of yes-votes over all valid votes for each referendum. Data for this referendum are only available at the département level.

EU support – 1992 Referendum about the Treaty of Maastricht: The Maastricht Treaty, also known as Treaty of the European Union (TEU), introduced the three pillar structure of the EU, augmenting economic cooperation with a common foreign and security policy, and with the fields justice and home affairs. Generally, it greatly expanded the competences and means of the Union and outlined the creation of the Euro. It is widely seen as the culmination point to the until then furthest reaching integration step in EU history (Moravcsik 1998). Only three countries held a referendum to ratify the treaty, including France. In the end, a close majority of 50.8% of French voters approved the treaty. The treaty resulted in the shifting of some nation-state powers either to the EU or to sub-national authorities, directly reflected in its text and political institutions (Mandrino 2008). Moreover, the importance of the European Court of Justice was explicitly recognized.

EU support – 2005 Referendum on the Treaty establishing a Constitution for Europe: The Constitution for Europe intended to create a consolidated constitution for the EU. It would have replaced the existing EU treaties with a single text, and replaced unanimity with qualified majority voting in more policy areas. As the referenda before, it would have been a major step towards more integration, and strengthened the EU as an actor compared to the nation-states. It was rejected by 55% of French voters; later
party of it were picked up by the Lisbon Treaty. Data on referenda were collected from the French interior ministry.

EU support – Eurosceptic parties: I examine the share of Eurosceptic parties in all three European elections taking place between the referenda in 1992 and 2005. The elections were held in 1994, 1999, and 2004. To classify a party as Eurosceptic I use the manifesto project database (Volkens et al. 2018), which provides time-varying assessments of a party’s stance towards the European Union. As a first measure, I define as Eurosceptic all parties with a net positive Eurosceptic manifesto score.

The far-right party Front National (FN) is an important part of the Eurosceptic group, but also took on strong nationalist positions. Areas with a history of tensions with the nation-state might for that reason reject to voting for the party. This is why I also create a second Eurosceptic measure without the FN. Finally, one potential issue with the previous two measures is the reliance on binary distinctions. To construct a continuous proxy for Euroscepticism, my last measure multiplies the vote share of each party running in the elections with the Euroscepticism score assigned to that party in the manifesto database. Table 2 provides descriptive statistics for the outcome variables.

<table>
<thead>
<tr>
<th>Obs.</th>
<th>Mean</th>
<th>St. Dev.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU Support (1992)</td>
<td>3230</td>
<td>53.59</td>
<td>11.78</td>
<td>0.00</td>
</tr>
<tr>
<td>EU Support (2005)</td>
<td>3235</td>
<td>45.65</td>
<td>10.28</td>
<td>0.00</td>
</tr>
<tr>
<td>Eurosceptic Parties (94-14)</td>
<td>16171</td>
<td>16.86</td>
<td>12.96</td>
<td>0.00</td>
</tr>
<tr>
<td>w/o Front National (94-14)</td>
<td>16171</td>
<td>3.93</td>
<td>7.55</td>
<td>0.00</td>
</tr>
<tr>
<td>Euroscepticism Index (94-14)</td>
<td>16171</td>
<td>61.29</td>
<td>65.19</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes: This table presents the following statistics for the outcome variables: Number of Observations, average value, standard deviation, and maximum and minimum value.

Mechanisms – Survey measures for European identity, etc.: In terms of coverage and number of participants at a sub-national département level in France the Observatoire Interrégional du Politique (OIP) is by far the best source on survey questions related to the EU. I use questions from the years between 1987 until 2003 based on data availability.

6. Note that I make one adjustment to the database. In 1999, the “Union pour l’Europe des nations” ran as an independent joint list, still representing the parties Rassemblement pour la République (RPF) and Mouvement pour la France (MPF), with the leader Charles Pasqua. The list was clearly Eurosceptic, but not listed in the manifesto database as it was not related to a specific party. It received about 13% of the votes in France in the 1999 election, so that omitting it would severely bias the results. Thus, the party is contained as a Eurosceptic party for this election (but not used for my last measure as there is no score).
Some questions appear only once, others are available from two or more survey waves. More details and the exact text of all questions is described in Table A.3.

3.2 Identification

I argued based on their long joint history, that the control area provide a valid counterfactual. To get a sense of pre-existing differences in identity before 1871, I make use of the fact that Louis XVI, shortly before the French revolution, wanted to assess the loyalty of his citizens. These data, known as the “Cahiers de doléances,” specifically ask about the relative strength of regional identity compared to national identity. This was originally text data, which was transformed to a numerical scale between 1 and 3, and aggregated to between 4 and 8 units per département (Hyslop 1968). Here I use data on the “third estate”, regular citizens, as well as the category “unified orders”. If assessments for more than one estate are available, I take the arithmetic average. Figure 3 shows that the average response in the treated and control area is essentially identical.

![Figure 3: Cahiers de doléances](image)

Notes: Based on the Cahiers de doléances from 1789. Hyslop (1968) computed these values at the city level based on more disaggregate reports about the city and the surrounding area in verbal form. The value 3 corresponds to “National patriotism strongest,” 2 corresponds to “Mixed loyalties: national patriotism combined with regionalism or class spirit, or both,” and 1 corresponds to “Other loyalties, regional, or class, or both, outweigh national patriotism.”

In addition to finding a suitable counterfactual, the assignment of units into being in the treated, more affected, area and the control area should be as close to random as possible. Technically, strict randomness is not required, but the assignment must have
been orthogonal to the outcome. To identify a causal effect I use a geographic regression discontinuity (RD) design:

\[y_i = \alpha + \beta \text{Treatment}_i + p(Distance to border)_i \times \text{Treatment}_i + z_i' \gamma + \delta_s + \epsilon_i. \]

\(y_i \) is the outcome at the municipal level. \(\text{Treatment}_i \) is a dummy variable taking on the value 1 if the municipality is in the treated area and 0 otherwise. All specifications include a local linear term for the forcing variable, \(Distance to border_i \), which is allowed to vary in slope on both sides of the border. The assumption is that conditional on this forcing variable, \(\beta \) captures the causal effect of the differences that distinguish the treated and control area. Distance is computed in kilometers using GIS software, based on the centroid of a municipality polygon. My preferred specification uses fixed effects (\(\delta_s \)) for five equally long border-segments, as well as controls for distance to the five largest cities in the area (\(z_i \)). These two measures ensure that municipalities on the other side of the border that are also geographically close are selected as counterfactuals. I will discuss later that alternative specifications like matching on coordinates, or omitting all controls yields very similar results. I compute results for two bandwidths: using ten kilometers and using the efficient bandwidth (Calonico, Cattaneo, and Titunik 2015). Ten kilometers is picked as the minimum bandwidth given the average diameter of a municipality; to a large extent this captures only municipalities directly at the border.\(^7\) Standard errors are clustered at the canton level, accounting for potential correlation across space within cantons. Figure E.1 shows that all main results also hold when varying bandwidths.

Section 2 described how the location of the border was taken centrally in Paris, and driven by pride rather than strategic considerations. Before moving to the main results, I use the formal RD specification to augment the historical narrative with more systematic evidence for a wide range of geographic and socio-economic measures. Figure 4 shows that there are indeed no discontinuities in geographical factors that would suggest strategic considerations influenced the exact local position of the border. I also gathered data from various sources to show that there are no pre-treatment discontinuities in a large range of socio-economic variables like population (Motte et al. 2003), the share of cropland and grazing land (from HYDE v.3.2), road length (Perret, Gribaudi, and Barthelemy 2015), and railroad connection and quality (Mimeur et al. 2018). Furthermore, Table E.2 shows no discontinuities in 1860 in measures like wages and revenues, which are only available at the larger arrondissement level. The absence of significant discontinuities further supports

\(^7\) Once we move below ten kilometers, municipalities would start being dropped from the estimations if the centroid is further away than ten kilometers, even though their polygon directly touches the treatment border.
that local geographic, political or economic conditions did not drive the decision taken centrally in Versailles.

Figure 4: Smoothness in Pre-Treatment Variables at the border

Notes: RD coefficients with 95% confidence interval. Detailed regression results in Table E.1.

4 Results

4.1 EU support - Referenda

I begin by considering differences in European Union support between the treatment and control area in the 1972 referendum about the European Communities enlargement. Even absent municipal level data, it is clearly visible in Figure 5a that the average agreement to the referendum in the treated area of about 85% is considerably higher than the 72% in the control area. The map also shows that EU support is higher in each individual treated département than in any of the control départements. Although this comparison does not allow a direct causal interpretation, these results only about two decades after the treatment period are useful to assess the persistence of differences over time.

The first set of causal results then considers the referenda in 1992 and 2005. Figure 5b shows the average municipal level share of yes-votes on a map, and an RD plot to illustrate the approach and effect. The map shows that, as in 1972, agreement for further EU integration was considerably higher in the treated area. The RD plot shows that,
conditional on distance to the border, there is also a clear jump upwards in agreement at the border.\footnote{Table \ref{tab:results} shows that the higher support for the EU is not driven by differences in turnout for the referendum.}

Table 3 shows the results from the RD estimations, always using ten kilometers and the efficient bandwidth. In 1992, the treatment effect varies between 5 and 6 percentage points difference between treated and untreated area. Relative to the mean outcome of about 53\%, this is a meaningfully large difference, which is also statistically significant with p-values smaller than 0.01. The difference in 2005 is smaller at 2.8 percentage points, with p-values slightly above 0.1, but consider that the average agreement was also about ten percentage points lower that year. When considering both referenda jointly in a pooled cross-section in columns 5 and 6, the treatment effect varies between 4 and 4.7 percentage points against a baseline support of 48\%, and is statistically significant at the 1\%-level. Accordingly, being more negatively exposed to the actions by nation-states in the past led to a persistent and sizable positive effect on European Union support in three referenda over a period of 37 years.

4.2 EU support - Euroscepticism

This section uses the three different definitions of political success of Eurosceptic parties outlined in the data section. In line with the referenda results on higher EU support, the map in Figure 5c shows that Euroscepticism is lower in the treated area. The RD plot suggests a negative discontinuity at the border. Table 3, panel B, then also reveals a significant negative effect on Euroscepticism. The size of the effect differs between the estimations, and needs to be interpreted in relation to the mean of the outcome. In column two, the vote share is 1.7 percentage points lower relative to a mean of about 14\%. Omitting the nationalist Front National leads to a relatively larger effect, corresponding to a 1.8 to 2.3 percentage points lower vote share, against a mean of about 7. For both measures, the effect is statistically significant with p-values below 0.01 when using the efficient bandwidth. Finally, columns 5 and 6 use the overall weighted Euroscepticism index score as the most comprehensive and my preferred measure of Euroscepticism. Again, Eurosceptic positions are less successful in the treated area, with the difference again being statistically significant with p-values below 5\%.
Table 3: RD results - EU Support and Euroscepticism (1992 - 2005)

Panel A

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>EU Support (Share yes-votes 1992 and 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>5.242 (1.818) [0.004]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>10.000</td>
</tr>
<tr>
<td>Observations</td>
<td>619</td>
</tr>
<tr>
<td>Mean of Outcome (Control)</td>
<td>48.72</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eurosceptic Parties w/o Front National</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>-1.086 (0.707) [0.124]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>10.000</td>
</tr>
<tr>
<td>Observations</td>
<td>1855</td>
</tr>
<tr>
<td>Mean of Outcome (Control)</td>
<td>15.88</td>
</tr>
</tbody>
</table>

Notes: Discontinuity at the treatment border using municipalities in Alsace and Lorraine. In panel A, the outcomes are the share of people voting “Yes” in the referendum on the Maastricht Treaty in 1992 and the French European Constitution Referendum in 2005. In panel B, the outcomes in Columns 1 is the share of people voting for eurosceptic parties in European parliamentary elections between 1994 and 2004. An eurosceptic party is defined by having a net negative EU related score in their manifestos between 1992 and 2003. The outcome in column 3 and 4 is adapted to exclude the vote share for the party Front National. In column 5 and 6 an index capturing euroscepticism is used, which is a weighted vote share of eurosceptic parties. Weighting occurs by multiplying the vote share with the euro-negativity score. Included controls are the distances to Germany (border), Metz, Strasbourg, Nancy, Mulhouse and 5 segment-fixed effects. Standard errors, clustered on the cantonal level, are displayed in brackets and p-values are right below them. For each outcome, the left column uses a narrow bandwidth of 10km, the right column the efficient bandwidth (mean square error criterion, Calonico et al. 2017).
Figure 5: EU Support and Euroscepticism - Maps and RD Plots

a.) Average Agreement in EU Referendum 1972 in %

b.) Agreement in EU Referenda, average in 1992 & 2005 in %

c.) Average Vote Share Eurosceptic Parties in EU Parliamentary Elections 1994-2004 in %
4.3 Potential effect of historical linguistic differences

To some extent, in particular in the most southern areas, the treatment border coincides with the historical linguistic border dividing German and French dialect speakers. This could bias the results on EU support if, for instance, German dialect speakers would generally be more favorable towards the EU. To address this potential issue, I exclude these parts of the border, and rely only on a comparison between treated and control area within the French dialect area. The right-hand side of Figure 6 illustrates this border modification. The coefficient plot on the left-hand side of the figure shows that even when considering only the discontinuities within also linguistically homogeneous regions, the treatment effects using the referenda and Euroscepticism remain stable with regard to size and statistical significance.

Figure 6: Robustness: Modified border excluding overlaps with linguistic border

Notes: The coefficient plot displays the main and alternative treatment coefficients. The outcome for the two coefficients on the left is the share of people voting “Yes” in the referendum on the Maastricht Treaty in 1992 and the French European Constitution Referendum in 2005. The outcome for the two coefficients on the right is the share of people voting for eurosceptic parties in European parliamentary elections between 1994 and 2004. The regressions are conducted with either the complete border or with only its part that do not overlap with the language border. The optimal bandwidth is selected with regards to the mean square error criterion (Calonico et al. 2017). Included controls are the distances to Germany (border), Metz, Strasbourg, Nancy, Mulhouse and 5 segment-fixed effects. Standard errors are clustered on the cantonal level. Corresponding regression results in Table E.13. Source for linguistic border is Harp (1998).

5 Mechanisms

The results so far document a causal effect of being historically more negatively affected to the actions of nation-states. This section explores the mechanisms behind this persistent difference.
5.1 Migration, socio-economics, and public good provision

Population in- or outflows might have contributed to explaining the observed differences in EU support. Historians document at least two big migration waves in and out of the treatment area as a whole, one when becoming German after 1871 and one after WWI when returning to France. The overall numbers at the département level added up to several 10,000, but historians disagree about the exact numbers (Harvey 1999). To work as a mechanism in the RD specifications, migration must be related to changes for municipalities at the border. For the years between 1866 and 1956, I managed to gather municipal level historical census data. Migration can affect EU support directly by changing the norms and identities in an area, or by changing the composition of the population with regard to socio-economic factors.

Panel A in Figure 7 begins by testing for discontinuities in population changes at the treatment border. The coefficient plots indicate no such discontinuities, suggesting that migration was not a direct mechanism. Prior research shows that socio-economic factors like education, age, employment or income are related to political choices. Even though panel A did not indicate net population changes at the border, the composition could still have been altered. The treatment period could also have influenced these factors also by changing incentives, norms or institutions. For instance, the remaining legal differences, the so-called “local laws”, could affects these aspects, as well as differences in religiosity (the treated area is more catholic and still features obligatory religious lessons at school) or the political influence of 50 years of German rule. Nonetheless, Figure 7 provides no evidence that these factors are the decisive mechanisms.

Finally, the third plausible socio-economic channel are changes in public good provision by the respective départements. For instance, the German occupation period might not only have been an exposure to negative policies by a nation-state, but to some degree citizens in the treated area might also have adapted to the more decentralized German system. A better functioning département could also plausibly explain higher support for policies that weaken the national level compared to other levels. Panel C, however, provides no empirical evidence in favor of this mechanism as well.9

Moreover, Appendix D shows that religiousness and religious denomination are not significantly related to EU support in France during the sample period.
5.2 European Identity

The idea that European identity positively influences support for European Integration is already emphasized by Hooghe and Marks (2004; 2005), who find that group identities can explain a sizable share of the variation in European Union support. Still, European identity and European Union support need not to be identical (Ciaglia, Fuest, and Heinemann 2018), and European Identity is also not identical to EU Identity. Still, this is the closest proxy for an identity linked to the EU as a political entity. Moreover, remember that the survey data are available at the département instead of municipal level, i.e., we are essentially comparing conditional means in the three treated and three control départements.

Posner (2005) describes the formation of group identities in two steps, identity construction and identity choice. Identity construction refers to the historical process that determines the set of identities available to an individual to choose from. People in the control and treated area choose from the same set of identities: regional Alsatian or Lorrainian, national French identity, and European identity. Posner then argues that the most
salient identities are the ones that serve the actors’ interests best when being aggregated at the relevant political level. This means that if the EU is to some extent perceived as a protection against nation-states, European identity is strengthened as the identity most suitable to achieve this desired outcome.

Alternatively, we can define identity formally by adapting Shayo (2009). An individual \(i \) can identify with multiple groups \(j \) that are potentially nested in each other, with \(j \in \{ N, EU \} \), with \(N \) and \(EU \) corresponding to nation and Europe. Group identity then depends on the *perceived* distance to the average member of group \(j \), so that

\[
h_{i,j} = 1 - \left(\sum_{k \in K} \omega_k (p^i_k - p^j_k)^2 \right)^{1/2}
\]

How strong an individual \(i \) identifies with a group \(j \) depends on the weight \(\omega_k \) she puts on individual attributes \(p_k \) that she shares with the other group members, compared to those that are unrelated or differ. These weights then determine the strength of each identity. Individual attributes are considered as predetermined, and we can think of being negatively affected by nation-state actions in the past as increasing the weights put on aspects shared with other Europeans. For instance, if she emphasizes the common history of the continent as one aspect more, her identity increases.\(^{10}\)

Table 4, Panel A begins by showing that attachment to Europe, a common proxy for identity, is clearly stronger in the treated area. This holds when setting European relative to national French identity. European identity remains between a quarter and a third of a standard deviation stronger in the treated area. Both differences are statistically significant at the 1%-level. Panel B uses whether respondents perceive themselves as European citizens and whether they are proud of being European as alternatives. Again, there is a consistently stronger European identity in the treated area. The differences are meaningfully large in size, and statistically highly significant. To sum up, the higher EU support and lower share of Eurosceptic parties is also reflected in a stronger European identity in the part of the region historically more negatively affected by the actions of nation-states.

\(^{10}\) Because identities are nested, one identity can thus be strengthened at the expense of the other, if the attributes are contradicting each other. However, this does need not to be the case, and depends on the overlap between the attributes associated with different groups.
Table 4: Mechanisms: Stronger European Identity

A. European Identity

<table>
<thead>
<tr>
<th></th>
<th>European Identity</th>
<th>European Identity/French National Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>0.277</td>
<td>0.231</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.029)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Observations</td>
<td>5553</td>
<td>5547</td>
</tr>
</tbody>
</table>

B. European Identity (alternative)

<table>
<thead>
<tr>
<th></th>
<th>European Citizen</th>
<th>European Pride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>0.201</td>
<td>0.258</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.063)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Observations</td>
<td>10023</td>
<td>1347</td>
</tr>
</tbody>
</table>

Sources: Individual-level survey by the Observatoire Interregional du Politique (OIP). “X” Identity: “Could you tell me whether you feel very attached, rather attached, not very attached or not attached at all to X?” X refers to Europe and the nation (France in this case), asked in separate questions (95, 97, 99 and 01). European Citizen: “I see myself as a European citizen.” (87, 89, 93, 96, 97, 01 and 03). European Pride: “How proud of being European are you?” (98). The higher the value, the higher the agreement of the respondents. All variables were standardized with mean zero. Regressions control for age, employment status, education and sex. Standard errors in brackets and p-values below.

In Table 5, I test whether the stronger European identity in the treated area is driven by higher perceived economic benefits for the region. A significant difference would suggest that people who expect higher economic gains are also the ones driving the differences in European identity. This does not seem to be the case, as interacting the treatment variable with three different indicators of perceived economic benefits always yield a positive and significant treatment effect, but this effect is not significantly altered by economic perceptions.
Table 5: Differences in European identity and perceived economic benefits

<table>
<thead>
<tr>
<th></th>
<th>Europ. Citizen</th>
<th>Europ. Identity</th>
<th>Europ. Pride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>0.286</td>
<td>0.121</td>
<td>0.217</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.039)</td>
<td>(0.062)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.002]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>- Common Market</td>
<td>0.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- EU Impact</td>
<td></td>
<td>0.504</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.032)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.000]</td>
<td></td>
</tr>
<tr>
<td>- Interregional cooperation in EU</td>
<td></td>
<td>0.189</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.060)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.002]</td>
<td></td>
</tr>
<tr>
<td>Interaction</td>
<td>0.059</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.037)</td>
<td>(0.075)</td>
</tr>
<tr>
<td></td>
<td>[0.172]</td>
<td>[0.976]</td>
<td>[0.996]</td>
</tr>
<tr>
<td>Observations</td>
<td>2399</td>
<td>2536</td>
<td>1294</td>
</tr>
</tbody>
</table>

Notes: Individual-level survey data. Observatoire Interregional du Politique (OIP). European Citizen: “I see myself as a European citizen.” (89 and 93). Common Market: ”Is the creation of an European common market going to worsen or improve the economic difficulties of your region?” (89 and 93). European Pride: “How proud of being European are you?” (98). Cooperation Regions: “Concerning development strategies, should the regional council seek cooperation with other European regions” (98). European Identity: “Could you tell me whether you feel very attached, rather attached, not very attached or not attached at all to Europe?” EU Impact: Opinion of respondents towards the impact of the European project on their region (95 and 97). All outcome variables are standardized with mean zero. The higher the value, the higher the agreement of the respondent. Regressions control for age, employment status, education and sex. Standard errors in brackets and p-values below.

6 Placebo tests and sensitivity

I conduct three placebo tests to verify the validity of the main result. The first examines to what degree the prior results could be driven by general differences between border départements and the rest of the country. For this purpose, I created a placebo border between all border départements and the next adjacent départements further towards the center (excluding the départements in my main analysis).

The second test uses the old département border within Lorraine prior to 1870, which has no meaning anymore today. This tests for potential differences within the region before the actual treatment period. Finding such differences would signal that the region was not homogeneous enough with regard to aspects related to the outcomes. The third placebo test is similar in spirit to the first test. It takes the treatment border, but moves it one département further towards the center of France. Here, we are hence testing for an
effect at the border of the whole region of Alsace and Lorraine with the adjacent region Champagne-Ardenne.\footnote{Note that in 2014, after our outcomes are measured, both regions were merged as part of a reform which cut the number of regions in France from 22 to 13. This caused widespread protests in the Alsace and Lorraine region.} This tests to what degree the whole region might be somehow special or different from the rest of the country. It is also a test whether a border region has a stronger identity than a more central region.

Figure 8 (a) to (c) visualize the respective placebo borders in yellow. Figure 8 (d) shows the effects at all three borders, focusing on the combined 1992 and 2005 effect for the referenda, and the Euroscepticism score as the preferred outcomes. None of the placebo effects turns out to be significant, and they are also all considerably smaller than the actual treatment effects. The largest estimates occur for comparing the Alsace-Lorraine region to the rest of the country, but even those are far from being statistically significant. Hence, I conclude that there is no evidence that the facts I measure are driven by pure chance, border départements generally being different, or something specific about the region. The results are also robust to a large variety of tests, shown in the accompanying online appendix. For instance, they remain very similar with regard to sign and magnitude without controls (Table E.4), without clustering on cantonal level (Table E.5), controlling for latitude and longitude (Table E.7) or additionally controlling for pre-treatment variables (Table E.6).
Figure 8: Placebo Borders

(a) Départements at the French Border
(b) Pre-1870 Meurthe-Moselle Border
(c) Control vs. Rest of France Border
(d) Coefficient Plots at Placebo Borders

Notes: Map A shows the départements at the French border (black) and their adjacent départements (grey). This excludes the départements that constitute Alsace and Lorraine and the second-row département Haute Marne. Haute Marne has no counterfactual on the first-row side due to this exclusion of the Alsace and Lorraine regions. The border separating first and second row départements is used as a placebo border (bold orange line). Map B displays the border between the former départements Meurthe and Moselle before 1871 (bold orange line). Map C shows the border between the control départements in the main regression and their adjacent départements inland (bold orange line). The coefficient plot displays the placebo treatment coefficients. EU Support is the average share of people voting “Yes” in the 1992 and 2005 referenda. Euroscepticism is the Eurosceptism score EU parliamentary elections between 1994 and 2004. The optimal bandwidth is selected with regards to the mean square error criterion (Calonico et al. 2017). Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy and distance to Mulhouse. Detailed results in Table E.14.
7 Conclusion

This paper argues and provides causal evidence that historical exposure to the negative actions of nation-states influences support to shift power from the nation-state to an international organization (IO). In times where international cooperation and multilateralism are under attack, this is an important insight that contributes to our understanding about the support for IOs who can promote peace between their members (Pevehouse and Russett 2006). The existing literature on the support for IOs has largely disregarded the role of deep-rooted historical differences and focused on aspects like personality traits, individual socio-economic features and domestic politics (see Hobolt and de Vries 2016b). In contrast, a growing literature demonstrates the importance of history in influencing political behavior (Mazumder et al. 2018; Fouka and Voth 2016; Rozenas and Zhukov 2019). This study demonstrates how important these deep-rooted differences are regarding support for IOs in general, and the European Union (EU) specifically.

The results are based on a natural experiment that allows me to compare two parts of historically homogeneous European regions that clearly differ with regard to their historical exposure to the negative actions of nation-states. The French-German border regions of Alsace and Lorraine constitute an illustrative case to examine the over-arching research topic: being caught between the two nations that were responsible for a fair share of the negative events many Europeans associate with nation-states. The results show that negative exposure led to persistently stronger support for the EU as an IO that contributes to maintaining peace between its members, and prevents member-states from discriminatory policies against certain regions. This causal evidence helps to better understand existing correlational evidence that many regions in tensions with their nation-states regard the EU as a potential ally (Hooghe and Marks 2005, 2004).

My evidence regarding European identity as a potential mechanism is of a more suggestive nature. Still, it is interesting to observe that higher EU support does not solely seem to be a rational strategic choice at the voting booth, but also goes along with a stronger common identity (Hooghe, Lenz, and Marks 2019). This is in line with research that identities are shaped by specific events in history (Depetris-Chauvin, Durante, and Campante 2019b; Fouka 2019; Mazumder 2018), and demonstrates the influence of identity on political decisions. EU member-states can now look back at several decades of peaceful international cooperation. Support for maintaining or even strengthening this cooperation seems, among other things, related to the existence of a sense of joint identity. In line with Brewer (1999), my results suggest that such a stronger identity at an overarching international level does not need to come at the expense of lower level identities.

Carnegie, Allison. 2014. “States held Hostage: Political Hold-up Problems and the Effects of International Institutions.” American Political Science Review 108 (1): 54–70. 4
De Vries, Catherine E. 2018. Euroscepticism and the Future of European Integration. Oxford University Press. 3

Rickard, Stephanie J, and Daniel Y Kono. 2014. “Think Globally, buy Locally: International Agreements and Government Procurement.” The Review of International Orga-

Appendix (for online publication)

List of Tables

A.1 Variable Description and Sources 1 ... 2
A.2 Variable Description and Sources 2 ... 3
A.3 Survey Questions (i.) ... 4
A.4 Descriptive Table 1 ... 5
A.5 Descriptive Table 2 ... 6
B.1 Detailed Overview of Repressive Policies in Alsace and Lorraine 7
C.1 Nested Identities: EU, National, and Regional Level (Alsace & Lorraine) .. 13
C.2 Identities as Substitutes (All of France w/o Alsace & Lorraine) 15
D.1 Share of Yes Votes and Religion, all of France 17
E.1 RD Smoothness Test: Pre-Treatment Variables 18
E.2 RD Smoothness Test: 1860 Economic Indicators (Level of Arrondisment) 19
E.3 Smoothness: Post-Treatment Variables ... 20
E.4 RD Specification - No Controls ... 21
E.5 RD Specification - No Clusters .. 22
E.6 RD Specification - Baseline Plus Pre-Treatment Controls 23
E.7 RD Specification - Coordinate Controls ... 24
E.8 Nested Identities: EU, National and Regional Level (all of France; Extensive Table) ... 26
E.9 Nested Identities: EU, National, and Regional Level (Alsace & Lorraine; Extensive Table) ... 27
E.10 Demographic Interactions .. 28
E.12 OLS Results - EU Support and Euroscepticism (1992 - 2005) 29
E.13 RD Specification - Robustness to Linguistic Border 30
E.14 RD Specification - Placebo Borders ... 31

List of Figures

E.1 Robustness Check: Bandwidth Choice ... 25
A Descriptive Table

Table A.1: Variable Description and Sources 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vote Share ‘Yes’ 2005</td>
<td>Share of Yes votes in the 2005 referendum (European Constitution)</td>
<td>Centre de données socio-politiques (CDSP)</td>
</tr>
<tr>
<td>Control Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to German Border</td>
<td>Nearest distance of municipal centroid to the German-French border</td>
<td>Author computations using ArcGIS</td>
</tr>
<tr>
<td>Distance to Metz</td>
<td>Nearest distance of municipal centroid to the municipal centroid of Metz</td>
<td>Author computations using ArcGIS</td>
</tr>
<tr>
<td>Distance to Nancy</td>
<td>Nearest distance of municipal centroid to the municipal centroid of Nancy</td>
<td>Author computations using ArcGIS</td>
</tr>
<tr>
<td>Distance to Strasbourg</td>
<td>Nearest distance of municipal centroid to the municipal centroid of Strasbourg</td>
<td>Author computations using ArcGIS</td>
</tr>
<tr>
<td>Distance to Mulhouse</td>
<td>Nearest distance of municipal centroid to the municipal centroid of Mulhouse</td>
<td>Author computations using ArcGIS</td>
</tr>
<tr>
<td>X-Coordinate</td>
<td>Position of municipal centroid on X-axis of the coordinate system (measured in meters)</td>
<td>Author computations using ArcGIS</td>
</tr>
<tr>
<td>Y-Coordinate</td>
<td>Position of municipal centroid on Y-axis of the coordinate system (measured in meters)</td>
<td>Author computations using ArcGIS</td>
</tr>
</tbody>
</table>

Notes: Variable description and source for all variables used in the paper and the online appendix.
Table A.2: Variable Description and Sources 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Treatment Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruggedness</td>
<td>Index of variance in elevation in each municipality</td>
<td>Global elevation data set</td>
</tr>
<tr>
<td>Elevation</td>
<td>Meter over sea level</td>
<td>NASA SRTM data set</td>
</tr>
<tr>
<td>Std. Dev. Elevation</td>
<td>Variation in elevation in standard deviations</td>
<td>NASA SRTM data set</td>
</tr>
<tr>
<td>Suitability (Potato)</td>
<td>Soil suitability for production of potatoes (medium input intensity and irrigation)</td>
<td>IIASA/FAO, 2012</td>
</tr>
<tr>
<td>Suitability (Wheat)</td>
<td>Soil suitability for production of wheat (medium input intensity and irrigation)</td>
<td>IIASA/FAO, 2012</td>
</tr>
<tr>
<td>Suitability (Barley)</td>
<td>Soil suitability for production of barley (medium input intensity and irrigation)</td>
<td>IIASA/FAO, 2012</td>
</tr>
<tr>
<td>Suitability (Sunflower)</td>
<td>Soil suitability for production of sunflower (medium input intensity and irrigation)</td>
<td>IIASA/FAO, 2012</td>
</tr>
<tr>
<td>Suitability (Onion)</td>
<td>Soil suitability for production of onion (medium input intensity and irrigation)</td>
<td>IIASA/FAO, 2012</td>
</tr>
<tr>
<td>River Length</td>
<td>Total length of all rivers (in meters)</td>
<td>Andreadis et al., 2013</td>
</tr>
<tr>
<td>Population</td>
<td>Population in 1866</td>
<td>French Census 1866</td>
</tr>
<tr>
<td>Population Density</td>
<td>Population in 1866 divided by area (in square km)</td>
<td>French Census 1866</td>
</tr>
<tr>
<td>Cropland</td>
<td>Total area of arable land and permanent crops in the municipality in 1860</td>
<td>HYDE 3.2</td>
</tr>
<tr>
<td>Grazing Land</td>
<td>Total land area used for mowing or grazing livestock in the municipality in 1860</td>
<td>HYDE 3.2</td>
</tr>
<tr>
<td>Road Length</td>
<td>Total length of road network in the municipality in 1860</td>
<td>Perret et al., 2015</td>
</tr>
<tr>
<td>Railway Station</td>
<td>Presence of railway station in municipality in 1860</td>
<td>Mimeur et al., 2018</td>
</tr>
<tr>
<td>Railway Quality</td>
<td>Linear hierarchy about the infrastructure in the municipality in 1860 (0 : no / 1 : fast)</td>
<td>Mimeur et al., 2018</td>
</tr>
<tr>
<td>Share Children</td>
<td>Share of children in the workforce on the arrondisment-level in Lorraine</td>
<td>Chanut et al., 2001</td>
</tr>
<tr>
<td>Income PC</td>
<td>Average income of industrial worker on the arrondisment-level in Lorraine</td>
<td>Chanut et al., 2001</td>
</tr>
<tr>
<td>Worker Productivity</td>
<td>Total industrial production divided by total number of workers on the arrondisment-level in Lorraine</td>
<td>Chanut et al., 2001</td>
</tr>
<tr>
<td>Firm Productivity</td>
<td>Total industrial production divided by total number of firms on the arrondisment-level in Lorraine</td>
<td>Chanut et al., 2001</td>
</tr>
<tr>
<td>Post-Treatment Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>Median income in municipality in 2008</td>
<td>INSEE</td>
</tr>
<tr>
<td>Age</td>
<td>Mean age in municipality in 2008</td>
<td>INSEE</td>
</tr>
<tr>
<td>Education</td>
<td>Share of people over 15 years old with a high school degree in 1999</td>
<td>INSEE</td>
</tr>
<tr>
<td>Employment</td>
<td>Share of blue-collar workers in 2006</td>
<td>INSEE</td>
</tr>
<tr>
<td>Health Care</td>
<td>Number of health care establishments (medium-term stay) per 1000 inhabitants in 2013</td>
<td>INSEE</td>
</tr>
<tr>
<td>High School</td>
<td>Number of high schools with general and/or technological education per 1000 inhabitants in 2013</td>
<td>INSEE</td>
</tr>
<tr>
<td>Vocational School</td>
<td>Number of secondary schools with vocational training per 1000 inhabitants in 2013</td>
<td>INSEE</td>
</tr>
<tr>
<td>Post Office</td>
<td>Number of post offices per 1000 inhabitants in 2013</td>
<td>INSEE</td>
</tr>
<tr>
<td>Change Population 1866-1946</td>
<td>Difference in population in a municipality between 1866 and 1946</td>
<td>INSEE</td>
</tr>
<tr>
<td>Change Population 1916-1946</td>
<td>Difference in population in a municipality between 1916 and 1946</td>
<td>INSEE</td>
</tr>
<tr>
<td>Change Population 1926-1946</td>
<td>Difference in population in a municipality between 1926 and 1946</td>
<td>INSEE</td>
</tr>
<tr>
<td>Change Population 1936-1946</td>
<td>Difference in population in a municipality between 1936 and 1946</td>
<td>INSEE</td>
</tr>
</tbody>
</table>

Notes: Variable description and source for all variables used in the paper and the online appendix.
Table A.3: Survey Questions (i.)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Question</th>
<th>Categories/Scale</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>French Identity</td>
<td>"Could you tell me whether you feel very attached, rather attached, not very attached or not attached at all to France?"</td>
<td>4 = very attached; 3 = rather attached; 2 = not very attached; 1 = not attached at all; standardized with mean 0 and standard deviation 1</td>
<td>OIP 1995/95/99 & 2001</td>
</tr>
<tr>
<td>European Identity</td>
<td>"Could you tell me whether you feel very attached, rather attached, not very attached or not attached at all to Europe?"</td>
<td>4 = very attached; 3 = rather attached; 2 = not very attached; 1 = not attached at all; standardized with mean 0 and standard deviation 1</td>
<td>OIP 1995/95/99 & 2001</td>
</tr>
<tr>
<td>European relative to National Identity</td>
<td></td>
<td>Relation of the two identities; standardized with mean 0 and standard deviation 1</td>
<td>OIP 1995/95/99 & 2001</td>
</tr>
<tr>
<td>Regional Identity</td>
<td>"Could you tell me whether you feel very attached, rather attached, not very attached or not attached at all to [Insert Region]?"</td>
<td>4 = very attached; 3 = rather attached; 2 = not very attached; 1 = not attached at all; standardized with mean 0 and standard deviation 1</td>
<td>OIP 1995/95/99 & 2001</td>
</tr>
<tr>
<td>European Citizen</td>
<td>"I see myself as a European citizen."</td>
<td>The higher the value, the more favorable are respondents to the claim.</td>
<td>OIP 1987/89/93/96/97 & 2001/03</td>
</tr>
<tr>
<td>European Pride</td>
<td>"How proud of being European are you?"</td>
<td>The higher the value, the prouder the respondent.</td>
<td>OIP 1998</td>
</tr>
<tr>
<td>Interregional Cooperation in EU</td>
<td>"Concerning development strategies, should the regional council seek cooperation with other European regions?"</td>
<td></td>
<td>OIP 1998</td>
</tr>
<tr>
<td>EU (generally)</td>
<td>Opinion of respondents towards the impact of the European project on their region.</td>
<td></td>
<td>OIP 1995/97</td>
</tr>
<tr>
<td>Common Market</td>
<td>"Is the creation of an European common market going to worsen or improve the economic difficulties of your region?"</td>
<td>The higher the value, the more positive the respondent’s opinion</td>
<td>OIP 1989/93</td>
</tr>
<tr>
<td>Evaluation of European Union</td>
<td>"Generally, do you think the fact that France is part of the EU is a good or a bad thing?"</td>
<td>1 = good thing; 0 = bad thing; standardized with mean 0 and standard deviation 1</td>
<td>PEF2002 V2</td>
</tr>
<tr>
<td>Evaluation of Democracy in EU</td>
<td>"And in the European Union, do you believe democracy is working very well, rather well, not very well or not well at all?"</td>
<td>4 = very well; 3 = rather well; 2 = not very well; 1 = not well at all; standardized with mean 0 and standard deviation 1</td>
<td>OIP 2000 Q10</td>
</tr>
</tbody>
</table>

Notes: Description of survey questions from the Observatoire Interrégional du Politique (OIP), as well as the Panel électoral français. The values of the categories are reversed compared to the original question categories. Questions were originally in French and have been translated.
Table A.4: Descriptive Table 1

<table>
<thead>
<tr>
<th>Treatment & Distance Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment (Dummy)</td>
<td>3237</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Distance to Border (in km)</td>
<td>3237</td>
<td>31.33</td>
<td>21.43</td>
<td>0.26</td>
<td>92.82</td>
</tr>
<tr>
<td>Dependent Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vote Share 'Yes' 1992</td>
<td>3230</td>
<td>53.59</td>
<td>11.78</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Vote Share 'Yes' 2005</td>
<td>3235</td>
<td>45.65</td>
<td>10.28</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Eurosceptic Parties 1994</td>
<td>3230</td>
<td>2.61</td>
<td>3.77</td>
<td>0.00</td>
<td>57.33</td>
</tr>
<tr>
<td>Eurosceptic Parties 1999</td>
<td>3233</td>
<td>25.38</td>
<td>7.94</td>
<td>0.00</td>
<td>75.00</td>
</tr>
<tr>
<td>Eurosceptic Parties 2004</td>
<td>3235</td>
<td>13.97</td>
<td>6.40</td>
<td>0.00</td>
<td>50.00</td>
</tr>
<tr>
<td>w/o Front National 1994</td>
<td>3230</td>
<td>2.61</td>
<td>3.77</td>
<td>0.00</td>
<td>57.33</td>
</tr>
<tr>
<td>w/o Front National 1999</td>
<td>3233</td>
<td>17.03</td>
<td>7.17</td>
<td>0.00</td>
<td>66.67</td>
</tr>
<tr>
<td>w/o Front National 2004</td>
<td>3235</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Euroscepticism Index 1994</td>
<td>3230</td>
<td>17.33</td>
<td>7.87</td>
<td>0.00</td>
<td>82.25</td>
</tr>
<tr>
<td>Euroscepticism Index 1999</td>
<td>3233</td>
<td>24.10</td>
<td>16.44</td>
<td>0.00</td>
<td>210.94</td>
</tr>
<tr>
<td>Euroscepticism Index 2004</td>
<td>3235</td>
<td>2875.34</td>
<td>995.79</td>
<td>0.00</td>
<td>8589.00</td>
</tr>
<tr>
<td>Turnout 1992</td>
<td>3230</td>
<td>74.57</td>
<td>6.28</td>
<td>33.33</td>
<td>100.00</td>
</tr>
<tr>
<td>Turnout 2005</td>
<td>3235</td>
<td>73.48</td>
<td>6.68</td>
<td>50.79</td>
<td>100.00</td>
</tr>
<tr>
<td>Control Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to German Border (in km)</td>
<td>3237</td>
<td>51.76</td>
<td>35.66</td>
<td>0.33</td>
<td>141.55</td>
</tr>
<tr>
<td>Distance to Metz (in km)</td>
<td>3237</td>
<td>83.12</td>
<td>44.02</td>
<td>1.60</td>
<td>203.16</td>
</tr>
<tr>
<td>Distance to Strasbourg (in km)</td>
<td>3237</td>
<td>108.62</td>
<td>50.57</td>
<td>0.02</td>
<td>223.02</td>
</tr>
<tr>
<td>Distance to Nancy (in km)</td>
<td>3237</td>
<td>73.61</td>
<td>34.71</td>
<td>0.06</td>
<td>164.98</td>
</tr>
<tr>
<td>Distance to Mulhouse (in km)</td>
<td>3237</td>
<td>125.88</td>
<td>58.08</td>
<td>0.00</td>
<td>258.53</td>
</tr>
<tr>
<td>Treatment Border Segment 1 (Dummy)</td>
<td>3237</td>
<td>0.24</td>
<td>0.42</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Treatment Border Segment 2 (Dummy)</td>
<td>3237</td>
<td>0.23</td>
<td>0.42</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Treatment Border Segment 3 (Dummy)</td>
<td>3237</td>
<td>0.29</td>
<td>0.45</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Treatment Border Segment 4 (Dummy)</td>
<td>3237</td>
<td>0.14</td>
<td>0.35</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Treatment Border Segment 5 (Dummy)</td>
<td>3237</td>
<td>0.11</td>
<td>0.31</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Notes: This table presents the following statistics for the components of the running variable, as well as the dependent and control variables: Number of Observations, Average Value, Standard Deviation, Maximum and Minimum Value. The description of the variables can be found in the Table A.1.
<table>
<thead>
<tr>
<th>Pre-Treatment Variables</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation</td>
<td>3237</td>
<td>300.79</td>
<td>118.86</td>
<td>110.80</td>
<td>1039.54</td>
</tr>
<tr>
<td>Ruggedness</td>
<td>3237</td>
<td>68.28</td>
<td>62.80</td>
<td>0.00</td>
<td>549.24</td>
</tr>
<tr>
<td>St. Dev. Elevation</td>
<td>3237</td>
<td>32.06</td>
<td>35.49</td>
<td>0.00</td>
<td>301.98</td>
</tr>
<tr>
<td>River Length (in km)</td>
<td>3237</td>
<td>75.10</td>
<td>112.81</td>
<td>0.00</td>
<td>2507.36</td>
</tr>
<tr>
<td>Road Length (in km)</td>
<td>3237</td>
<td>4.42</td>
<td>5.83</td>
<td>0.00</td>
<td>74.39</td>
</tr>
<tr>
<td>Railway Station</td>
<td>3229</td>
<td>0.04</td>
<td>0.21</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Railway Quality</td>
<td>3229</td>
<td>0.11</td>
<td>0.37</td>
<td>0.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Cropland</td>
<td>3237</td>
<td>20.45</td>
<td>11.40</td>
<td>0.00</td>
<td>51.89</td>
</tr>
<tr>
<td>Grazing Land</td>
<td>3237</td>
<td>23.37</td>
<td>13.10</td>
<td>0.00</td>
<td>45.43</td>
</tr>
<tr>
<td>Population Density 1866</td>
<td>3229</td>
<td>84.64</td>
<td>117.67</td>
<td>0.00</td>
<td>3234.54</td>
</tr>
<tr>
<td>Population 1866</td>
<td>3229</td>
<td>823.00</td>
<td>2526.00</td>
<td>0.00</td>
<td>84167.00</td>
</tr>
<tr>
<td>Suitability (Barley)</td>
<td>3206</td>
<td>5585.00</td>
<td>1771.00</td>
<td>794.00</td>
<td>10000.00</td>
</tr>
<tr>
<td>Suitability (Maize)</td>
<td>3206</td>
<td>3118.00</td>
<td>1783.00</td>
<td>0.00</td>
<td>7776.00</td>
</tr>
<tr>
<td>Suitability (Onion)</td>
<td>3206</td>
<td>5091.00</td>
<td>1584.00</td>
<td>0.00</td>
<td>8988.00</td>
</tr>
<tr>
<td>Suitability (Wheat)</td>
<td>3206</td>
<td>5801.00</td>
<td>1788.00</td>
<td>798.00</td>
<td>10000.00</td>
</tr>
<tr>
<td>Suitability (Potato)</td>
<td>3206</td>
<td>3713.00</td>
<td>1047.00</td>
<td>730.00</td>
<td>5882.00</td>
</tr>
<tr>
<td>Suitability (Sunflower)</td>
<td>3206</td>
<td>5105.00</td>
<td>1721.00</td>
<td>0.00</td>
<td>8887.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-Treatment Variables</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Population 1866-1946</td>
<td>3226</td>
<td>52.00</td>
<td>2305.00</td>
<td>-4495.00</td>
<td>91348.00</td>
</tr>
<tr>
<td>Change Population 1916-1946</td>
<td>3222</td>
<td>-88.00</td>
<td>642.00</td>
<td>-</td>
<td>8814.00</td>
</tr>
<tr>
<td>Change Population 1926-1946</td>
<td>3228</td>
<td>-38.00</td>
<td>336.00</td>
<td>-8332.00</td>
<td>4429.00</td>
</tr>
<tr>
<td>Change Population 1936-1946</td>
<td>3232</td>
<td>-80.00</td>
<td>545.00</td>
<td>-</td>
<td>1111.00</td>
</tr>
<tr>
<td>Age</td>
<td>3237</td>
<td>39.71</td>
<td>3.21</td>
<td>28.26</td>
<td>69.38</td>
</tr>
<tr>
<td>Income</td>
<td>2647</td>
<td>31559.20</td>
<td>5998.64</td>
<td>17691.00</td>
<td>53547.00</td>
</tr>
<tr>
<td>Education</td>
<td>3234</td>
<td>0.10</td>
<td>0.03</td>
<td>0.00</td>
<td>0.50</td>
</tr>
<tr>
<td>Employment</td>
<td>3236</td>
<td>0.19</td>
<td>0.08</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Health Care</td>
<td>3143</td>
<td>0.01</td>
<td>0.11</td>
<td>0.00</td>
<td>3.33</td>
</tr>
<tr>
<td>High School</td>
<td>3143</td>
<td>0.01</td>
<td>0.09</td>
<td>0.00</td>
<td>2.50</td>
</tr>
<tr>
<td>Vocational School</td>
<td>3143</td>
<td>0.01</td>
<td>0.06</td>
<td>0.00</td>
<td>2.50</td>
</tr>
<tr>
<td>Post Office</td>
<td>3143</td>
<td>0.08</td>
<td>0.32</td>
<td>0.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Notes: This table presents the following statistics for the Pre- and Post-treatment variables: Number of Observations, Average Value, Standard Deviation, Maximum and Minimum Value. The description of the variables can be found in the Table A.2.
Overview of repressive policies

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Ruled By</th>
<th>Policy</th>
<th>Policy Category</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1871-1902</td>
<td>Germany</td>
<td>Reactivation of the 1849 “dictatorship paragraph”: permitted house searches, the expulsion of agitators and prohibiting political organizations.</td>
<td>Social, political, military freedom, equality</td>
<td>Carrol (2010); Grasser (1998)</td>
</tr>
<tr>
<td>Beginning 1871/72</td>
<td>Germany</td>
<td>Bismarcks Kulturkampf: government seriously restricted Catholic education as well as the Catholic press. Moreover, some religious orders were expelled from the Reichsland.</td>
<td>Regional institutions and administrative personnel</td>
<td>Silverman (1966)</td>
</tr>
<tr>
<td>May 1872</td>
<td>Germany</td>
<td>Strasbourg University is reopened as ”Kaiser-Willhelm-Universitaet”.</td>
<td>Language</td>
<td>Höpel (2012)</td>
</tr>
<tr>
<td>1873</td>
<td>Germany</td>
<td>French is prohibited to be taught in schools.</td>
<td>Language</td>
<td>Grasser (1998)</td>
</tr>
<tr>
<td>1878</td>
<td>Germany</td>
<td>Legislation to restrict the political participation of the people.</td>
<td>Social, political, military freedom, equality</td>
<td>Carrol (2010)</td>
</tr>
<tr>
<td>Year</td>
<td>Country</td>
<td>Event Description</td>
<td>Freedom/Equality</td>
<td>Source</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>1887</td>
<td>Germany</td>
<td>Choral and gymnastic societies are banned as they are seen as opportunities for the coming-together of pro-French minded people.</td>
<td>Social, political, military freedom, equality</td>
<td>Carrol (2010)</td>
</tr>
<tr>
<td>1890 onward</td>
<td>Germany</td>
<td>Unwelcome legislation (e.g. German trade regulations) is introduced in Alsace-Lorraine.</td>
<td>Regional institutions and Administrative Personnel</td>
<td>Höpel (2012)</td>
</tr>
<tr>
<td>1890 onward</td>
<td>Germany</td>
<td>German becomes the only official language and district and county councils become obliged to embrace German as their only language.</td>
<td>Language</td>
<td>Grasser (1998)</td>
</tr>
<tr>
<td>Until 1898</td>
<td>Germany</td>
<td>Restrictions are imposed on the press.</td>
<td>Media</td>
<td>Silverman (1966)</td>
</tr>
<tr>
<td>1914</td>
<td>Germany</td>
<td>Citizens sympathizing with the French are taken in "protective detention" without trial.</td>
<td>Separation and segregation; Social, political, military freedom, equality</td>
<td>Harvey (1999)</td>
</tr>
<tr>
<td>1917/18</td>
<td>France</td>
<td>Approximately 100 000 Germans are deported.</td>
<td>Separation and segregation</td>
<td>Carrol and Zanoun (2011), Callender (1927)</td>
</tr>
<tr>
<td>1918</td>
<td>France</td>
<td>Establishment of French Currency.</td>
<td>Regional institutions and administrative personnel</td>
<td>Callender (1927)</td>
</tr>
</tbody>
</table>
Dec. 1918 France An identity-card system is implemented: Locals are classified and receive a specific civil status according to the origin of their parents. Lower classification is often associated with discrimination.

Separation and segregation Harvey (1999)

Dec. 1918 to Oct. 1919 France "Commissions de Triage" are established: Designed to assert the Frenchness of the population in re-annexed areas, individuals suspected of faulty loyalties are investigated and either exonerated, placed under surveillance, taken into custody or expelled from France. In this context, some pro-German Alsatians are forcefully emigrated.

Separation and segregation Social, political, military freedom, equality Carrol and Zanoun (2011); Harvey (1999)

1920 France French becomes the only language to be taught in schools. The so-called “direct method”, where students are immersed in the French language with no reference to German, leads to considerable difficulties for a majority of French-speaking Alsatians.

Language Grasser (1998); Goodfellow (1993)

1920s France French becomes the official legal language. Due to this, many bureaucrats, who had previously built their career under the German system, are in danger of losing their jobs or being denied promotions as the French government now regards them as incompetent or politically problematic.

Language Goodfellow (1993)
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Description</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1924</td>
<td>France</td>
<td>The Ministerial Declaration by Premier Edouard Herriot introduces a centralised French administration as well as all French laws and institutions into the recovered territories. The Declaration also introduces the separation of church, secular education and a number of anti-clerical laws.</td>
<td>Regional institutions and administrative personnel Carrol and Zanoun (2011); Goodfellow (1993)</td>
</tr>
<tr>
<td>1925</td>
<td>France</td>
<td>The post of Commissioner General is abolished and the regional government returned to the Government of Paris.</td>
<td>Regional institutions and administrative personnel Callender (1927)</td>
</tr>
<tr>
<td>1927/28</td>
<td>France</td>
<td>Three autonomist journals become banned as they are seen to have had a central role in a campaign against the French: The "Volksstimme" ("voice of the people"), the "Wahrheit" ("truth") and the "Zukunft" ("future").</td>
<td>Media Goodfellow (1993)</td>
</tr>
<tr>
<td>1927/28</td>
<td>France</td>
<td>Colmar trials: 15 prominent autonomists are arrested and tried with the reason given that they had participated in a plot to separate Alsace from France. 4 of the 15 are sentenced to 1 year in prison, while 5 are sentenced to be exiled.</td>
<td>Social, political, military freedom, equality Goodfellow (1993)</td>
</tr>
<tr>
<td>1939</td>
<td>France</td>
<td>15 autonomists are arrested for relations with the enemy. One autonomist leader is later executed by a fire squad in 1940 in Champigneulles.</td>
<td>Social, political, military freedom, equality Goodfellow (1993)</td>
</tr>
<tr>
<td>Year</td>
<td>Country</td>
<td>Event Description</td>
<td>Language References</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1940</td>
<td>Germany</td>
<td>The French language is prohibited from use and street signs must be renamed in German. French names must be replaced by German equivalents.</td>
<td>www.nithart.com; Encyclopédie</td>
</tr>
<tr>
<td>1940</td>
<td>Germany</td>
<td>Germans prohibit the Alsatian dialect as it is regarded as a means of protest against the Nazi-government.</td>
<td>Encyclopédie</td>
</tr>
<tr>
<td>1940</td>
<td>Germany</td>
<td>Germans prohibit typically Alsatian gatherings and celebrations as they are seen as expressions of specifically regional culture and therefore against the Germanisation efforts of the Nazi regime.</td>
<td>Encyclopédie</td>
</tr>
<tr>
<td>1940</td>
<td>Germany</td>
<td>German is made the official language of the administration.</td>
<td>Graser (1998)</td>
</tr>
<tr>
<td>1945-</td>
<td>France</td>
<td>Teaching of German is de jure prohibited in schools, de facto this is applied in about half of the schools.</td>
<td>www.alsace-lorraine.org; Anderson (1972)</td>
</tr>
<tr>
<td>1952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>France</td>
<td>Bordeaux trials: 13 Alsatian malgré-nous are sentenced to death due to their involvement in the massacre of Oradour-sur-Glane.</td>
<td>Boswell (2008); Collins (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Encyclopédie refers to www.encyclopedie.bs editions.fr.

C Relation between multiple identities

C.1 Relation between Multiple Identities

One crucial question when discussing about contributing to a stronger identity of a supra-national identity like the European Union is whether this has necessarily to come at the cost of weaker lower-level identities. Although there is a literature about the
possibility of dual identities, in particular in border regions, it seems that this is often implicitly assumed. To examine this, I also evaluate the effect of the treatment on regional and national identity. Such an approach is not entirely new and relates to existing studies. Hooghe and Marks (2004), for instance, find that individuals stating a stronger national identity correlates with a stronger European identity using Eurobarometer data.

It is not straightforward to evaluate the relationship between identities at different levels using survey measures as proxies for the real identity. Using the OIP surveys, for instance, there is a positive correlation between identities at all levels. However, this is hard to interpret as it could be related to an individual-specific error term, like a general tendency to answer more positively or negatively. In addition to studying correlations at the individual level, we can also examine the correlations between département level, regional, national and European identities. This way, the individual-specific error terms are canceled out. The result still suggests a positive correlation between the identities at different levels. Nonetheless, a causal interpretation could still be problematic as the differences cannot be distinguished from département-specific error terms.

Ideally, we would want to use real panel data, to examine how the European identity of the same individual changes as her national or regional identity changes. Instead of such a panel, examining the effect of the treatment on the identities at all three levels is of equal interest. Given that we can interpret the treatment effect as the change within formerly homogeneous regions, we can also examine whether the observed increase in European identity comes at the cost of a lower national or regional identity. Table E.9 shows the results. First, even though the treated areas were historically more negatively affected by the French nation state, the stronger European identity does not come at the expense of a strongly weaker national identity. French identity is only minimally weaker, and the difference is clearly statistically insignificant. When examining regional identity, there is even a positive effect. That means, both European identity and regional identity are strengthened. This is explained by Dehdari and Gehring (2018). Due to the European Union being perceived as fostering the cause of regions in the 1990s and early 2000s, regional and European identity are perceived as aligned; in economic terms they could be described as substitute. Using the terminology in Hooghe and Marks (2004), individuals defined their regional identity as inclusive with regard to European identity.12

12 Also note that the positive correlation between regional and European identity is much stronger in the treated area than in the rest of France.
Table C.1: Nested Identities: EU, National, and Regional Level (Alsace & Lorraine)

<table>
<thead>
<tr>
<th>Panel A</th>
<th>Strength of Identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Regional Identity</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>0.179</td>
</tr>
<tr>
<td>(0.029)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>(0.000)</td>
<td>[0.582]</td>
</tr>
<tr>
<td>Observations</td>
<td>5620</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>Relationship between Nested Identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Regional Identity</td>
</tr>
<tr>
<td>Variable of Interest</td>
<td></td>
</tr>
<tr>
<td>V.o.I. X Treatment vs. Control</td>
<td>0.002</td>
</tr>
<tr>
<td>(0.030)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>(0.941)</td>
<td>[0.776]</td>
</tr>
<tr>
<td>Observations</td>
<td>5611</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C</th>
<th>Preference: Level of Decision-Making</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Regional Level</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>0.157</td>
</tr>
<tr>
<td>(0.060)</td>
<td>(0.062)</td>
</tr>
<tr>
<td>(0.009)</td>
<td>[0.255]</td>
</tr>
<tr>
<td>Observations</td>
<td>1322</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel D</th>
<th>Preference: Level of Decision-Making (relative to alternative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1</td>
<td>Regional Level</td>
</tr>
<tr>
<td>Option 2</td>
<td></td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>0.152</td>
</tr>
<tr>
<td>(0.076)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>(0.047)</td>
<td>[0.001]</td>
</tr>
<tr>
<td>Observations</td>
<td>902</td>
</tr>
</tbody>
</table>

Sources: Individual-level survey data. Observatoire Interregional du Politique (OIP). “X” Identity: “Could you tell me whether you feel very attached, rather attached, not very attached or not attached at all to X?” The higher the value the more attached the respondent is to X. X refers to Europe, the nation (France in this case) and the region, asked in separate questions. Main Question Panel C and D: “In your opinion, should the development of your region occur according to a plan decided by the region, the state or the European Union?” In Panel C, “X” Level is a dummy variable indicating the choice of “X” (Region, State or EU). In Panel D, for each column the sample is reduced only the respondents choosing either Option 1 or 2 (Option 1 = 1; Option 2 = 0). Regressions control for age, employment status, education and sex. Standard errors in brackets and p-values right below. All outcome variables are standardized with mean zero.

Panel B of Table E.9explores for each possible identity pair, whether the relationship between two identities is stronger or weaker in the treated compared to the control area. To do so, I regress one identity on another, also include the treatment dummy variable, as well as the interaction between the two. Note that in this regression only the interaction between the treatment dummy and the other identity can be causally
The results show that the differences between treatment and control area are not explained by a stronger relationship between regional and French, as well as French and European identity. There is a significant interaction when considering the relationship between European and regional identity. The correlation between the two is significantly stronger in the treated area than in the control area. Hence, the joint increase in both identities in panel a can be explained by the fact that both identities seem to be stronger substitutes in the treated area.

C.2 Further details

Table C.2 explores the relationship between different identities in more detail, now using the same survey data for all of France, only excluding the area examined so far. Panel A explores whether each pair of identity variables is correlated positively at the individual level. This is clearly the case, there is a positive relationship for all three pairs, which is stronger for identity pairs that are conceptually closer to each other. That means, regional and French identity, as well as French and European identity are closer related with each other than European and regional identity. All individual level results are robust to including département- and year-fixed effects.

Of course, these individual level results might be driven by any omitted variable at the individual level; or framed differently an individual specific error term. To overcome this concern as well as possible with the data at hand, I average the identity variables at the département level for panel C and D. With a sufficiently high a number of observations per département, in this case about 100, the individual specific error terms should cancel each other out when averaging. Using a pooled cross section in panel C yields rather different results. The relationship between regional and French identity is not statistically insignificant, and the relationship between European and regional identity becomes negative. When including département and year fixed effects in panel D, and thus estimating off of only changes in the explanatory variables by département, the results change again. Regional and French identity are again positively correlated, and European and regional identity positive but statistically insignificant.

The most robust positive relationship might come as a surprise for many politicians and scientific observers. National French identity and European identity are positively correlated in each specification. This holds even when identifying the effect only with changes over time in panel D. Hence, when thinking achieving a stronger European identity in the future, at least the evidence from France suggests that a stronger national
identity seems helpful rather than an obstacle to achieving this. Table 5 shows that the stronger European identity in the treated area does not seem to be driven by the perception of stronger economic benefits. Thus, it appears to be driven by a psychological change relating to the value of the EU in other non-economic dimensions; potentially its role in maintaining peace.

Table C.2: Identities as Substitutes (All of France w/o Alsace & Lorraine)

<table>
<thead>
<tr>
<th>Dependent Variable of Interest</th>
<th>Regional Identity</th>
<th>French Identity</th>
<th>European Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td></td>
</tr>
</tbody>
</table>

Panel A Individual level

<table>
<thead>
<tr>
<th>Variable of Interest</th>
<th>0.362</th>
<th>0.177</th>
<th>0.061</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Observations</td>
<td>44325</td>
<td>43658</td>
<td>43616</td>
</tr>
</tbody>
</table>

Panel B Individual level (Département- and year-fixed effects)

<table>
<thead>
<tr>
<th>Variable of Interest</th>
<th>0.371</th>
<th>0.177</th>
<th>0.074</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Observations</td>
<td>44325</td>
<td>43658</td>
<td>43616</td>
</tr>
</tbody>
</table>

Panel C Départemental level

<table>
<thead>
<tr>
<th>Variable of Interest</th>
<th>0.078</th>
<th>0.181</th>
<th>-0.100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.095)</td>
<td>(0.050)</td>
<td>(0.042)</td>
</tr>
<tr>
<td></td>
<td>[0.416]</td>
<td>[0.000]</td>
<td>[0.018]</td>
</tr>
<tr>
<td>Observations</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Panel D Départemental level (Département- and year-fixed effects)

<table>
<thead>
<tr>
<th>Variable of Interest</th>
<th>0.444</th>
<th>0.157</th>
<th>0.122</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.091)</td>
<td>(0.100)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.089]</td>
<td>[0.227]</td>
</tr>
<tr>
<td>Observations</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Notes: Individual-level survey data. Observatoire Interregional du Politique (OIP). “X” Identity: “Could you tell me whether you feel very attached, rather attached, not very attached or not attached at all to X?” The higher the value the more attached the respondent is to X. X refers to Europe, the nation (France in this case) and the region, asked in separate questions. Regressions control for age, employment status, education and sex. Standard errors in brackets and p-values right below. All outcome variables are standardized with mean zero.
D Further Regressions

Religiosity and EU support, relevant for 1992 and 2005 referenda

One distinct feature in which the local laws strongly differ from the rest of France is with regard to religion. Historically, the church played a larger role in the average citizens life in the treated area until after WWI, and still does to some degree until today. In contrast to the rest of France, pupils in the area are still subjected to compulsory religious classes at school (usually two hours per week). This is not uncommon in other European countries, for instance, many of the southern German states feature a similar policy. Usually these classes are not dogmatic, but transmit information about religions in general, of course still with an emphasis on Christianity. If religion or religious denomination is related to a more favorable attitude towards the EU, part of the effect we measure and attribute to differences in exposure to intrusive policies might be driven by differences in religious identity.

However, the available literature indicates no direct relationship between religious attachments and European integration and “even indirect effects of religion on Euroscepticism are small or appear to cancel each other out” (Boomgaarden and Freire, 2009, p.1). To the opposite, albeit minimally, it is argued that “actors such as religious parties and the churches have strayed from the integrationist path and contributed to Euroscepticism” (Minkenberg 2009, p.1190).

To make sure this is really no concern, we examine the purported relationship in a more systematic way as well. In the specific French context, there are no municipal level measures on religious affiliation and the share of people who consider themselves secular, due to the specific secular constitution and approach in France. Nonetheless, we can use outcomes aggregated at the département level for all of France to assess the relationship between religion and voting in the EU referendum. Table D.1 shows results for two variables that measure the intensity of religiousness and religious denomination.

Attendance measures how often subjects attend religious services, both as a continuous variable and coded as a set of dummies with never attending as the reference category.

Denomination relates to the share of people who perceive themselves as Roman Catholic, Protestant, Christian Orthodox, Jewish, Muslim or other faiths, with no religious affiliation as the reference category.

The results show no difference for Attendance in both 1992 and 2005. With Attendance coded as individual dummies, there is also no stable relationship. Only very enthusiastic churchgoers have a marginally significant positive correlation compared to those who never attend in 2005, but not in 1992. The pattern is similar for denomination. The only
positive correlation which is significant at the 10 percent level is with Protestant in 1992, but it also disappears in 2005. Overall, this supports the existing literature that religion does not play a major role for attitudes towards the EU. Thus, the concern that religious differences would contaminate the results appears unfounded.

Table D.1: Share of Yes Votes and Religion, all of France.

<table>
<thead>
<tr>
<th>Attendance [mean]</th>
<th>Share Yes 1992</th>
<th>Share Yes 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Attendance: Weekly</td>
<td>0.114</td>
<td>0.099</td>
</tr>
<tr>
<td>[0.167]</td>
<td>[0.135]</td>
<td></td>
</tr>
<tr>
<td>Attendance: 2-3 times a month</td>
<td>0.002</td>
<td>0.025</td>
</tr>
<tr>
<td>[0.983]</td>
<td>[0.788]</td>
<td></td>
</tr>
<tr>
<td>Attendance: Once a month</td>
<td>-0.052</td>
<td>-0.097</td>
</tr>
<tr>
<td>[0.625]</td>
<td>[0.164]</td>
<td></td>
</tr>
<tr>
<td>Attendance: Sev. times a year</td>
<td>0.057</td>
<td>0.054</td>
</tr>
<tr>
<td>[0.114]</td>
<td>[0.144]</td>
<td></td>
</tr>
<tr>
<td>Attendance: Less freq.</td>
<td>0.036</td>
<td>-0.001</td>
</tr>
<tr>
<td>[0.391]</td>
<td>[0.988]</td>
<td></td>
</tr>
<tr>
<td>Roman Catholic</td>
<td>0.029</td>
<td>0.004</td>
</tr>
<tr>
<td>[0.291]</td>
<td>[0.902]</td>
<td></td>
</tr>
<tr>
<td>Protestant</td>
<td>0.353</td>
<td>0.146</td>
</tr>
<tr>
<td>[0.054]</td>
<td>[0.321]</td>
<td></td>
</tr>
<tr>
<td>Christian Ortodox</td>
<td>0.115</td>
<td>0.267</td>
</tr>
<tr>
<td>[0.846]</td>
<td>[0.585]</td>
<td></td>
</tr>
<tr>
<td>Jewish</td>
<td>0.847</td>
<td>1.095</td>
</tr>
<tr>
<td>[0.116]</td>
<td>[0.278]</td>
<td></td>
</tr>
<tr>
<td>Moslem</td>
<td>-0.092</td>
<td>0.008</td>
</tr>
<tr>
<td>[0.437]</td>
<td>[0.955]</td>
<td></td>
</tr>
<tr>
<td>Other Religions</td>
<td>-0.155</td>
<td>0.010</td>
</tr>
<tr>
<td>[0.495]</td>
<td>[0.971]</td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>94</td>
<td>94</td>
</tr>
</tbody>
</table>

Notes: This table tests whether there is a clear relationship between religious affiliation and voting in the two referenda 1992 and 2005. The OLS estimates use aggregate survey results at the département-level. Attendance refers to how often the respondents attend religious services. Never attending is the omitted reference category for attendance, no religious denomination is the omitted reference category for religion. Controls: Sex, Age, Years of schooling, Urban vs Rural, Union membership, Degree, Income, and Household size. p-values in brackets. There is no systematic effect of religion, which is reassuring as the areas in former Alsace-Lorraine has a slightly different history with regard to schooling. Accordingly, these differences and schooling should not explain our results. Short Interpretation: Religious beliefs and denomination could affect voting in the referenda. We show for all of France that such a relationship never shows up significantly at any level, both for intensity of belief measured by church attendance, as well as when using denomination as the variable of interest. We conclude that there are some differences with regard to the treatment of religion between the départements, but none that closely influences or could explain our result.
Robustness

Table E.1: RD Smoothness Test: Pre-Treatment Variables

<table>
<thead>
<tr>
<th></th>
<th>Barley</th>
<th>Wheat</th>
<th>Potato</th>
<th>Onion</th>
<th>Sunflower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>49.089</td>
<td>145.863</td>
<td>-69.233</td>
<td>10.633</td>
<td>59.347</td>
</tr>
<tr>
<td></td>
<td>(445.953)</td>
<td>(443.440)</td>
<td>(242.320)</td>
<td>(364.771)</td>
<td>(441.175)</td>
</tr>
<tr>
<td></td>
<td>[0.912]</td>
<td>[0.742]</td>
<td>[0.775]</td>
<td>[0.977]</td>
<td>[0.893]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>10.000</td>
<td>10.000</td>
<td>11.537</td>
<td>10.000</td>
<td>10.000</td>
</tr>
<tr>
<td>Observations</td>
<td>614</td>
<td>614</td>
<td>706</td>
<td>614</td>
<td>614</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Elevation</th>
<th>Std. Dev. Elev.</th>
<th>Ruggedness</th>
<th>Pop. Density</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>5.367</td>
<td>5.496</td>
<td>17.329</td>
<td>382.246</td>
<td>9.646</td>
</tr>
<tr>
<td></td>
<td>(33.568)</td>
<td>(11.621)</td>
<td>(20.605)</td>
<td>(234.538)</td>
<td>(10.370)</td>
</tr>
<tr>
<td></td>
<td>[0.873]</td>
<td>[0.636]</td>
<td>[0.400]</td>
<td>[0.103]</td>
<td>[0.352]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>13.146</td>
<td>11.085</td>
<td>12.479</td>
<td>18.554</td>
<td>10.863</td>
</tr>
<tr>
<td>Observations</td>
<td>795</td>
<td>681</td>
<td>757</td>
<td>1098</td>
<td>670</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>River Length</th>
<th>Road Length</th>
<th>Grazing Land</th>
<th>Cropland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>3404.949</td>
<td>954.125</td>
<td>0.844</td>
<td>-0.973</td>
</tr>
<tr>
<td></td>
<td>(14492.769)</td>
<td>(858.652)</td>
<td>(3.135)</td>
<td>(1.380)</td>
</tr>
<tr>
<td></td>
<td>[0.814]</td>
<td>[0.266]</td>
<td>[0.788]</td>
<td>[0.481]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>12.619</td>
<td>13.394</td>
<td>10.000</td>
<td>10.000</td>
</tr>
<tr>
<td>Observations</td>
<td>764</td>
<td>811</td>
<td>619</td>
<td>619</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Railway Station</th>
<th>Railway Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>-0.000</td>
<td>-0.073</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.056)</td>
</tr>
<tr>
<td></td>
<td>[0.987]</td>
<td>[0.194]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>13.944</td>
<td>11.089</td>
</tr>
<tr>
<td>Observations</td>
<td>846</td>
<td>681</td>
</tr>
</tbody>
</table>

Notes: Tests for discontinuities in pre-treatment variables for the whole border. *Ruggedness* is the mean index of the variation in elevation, while *Elevation* is the mean elevation. *Std. Dev. Elev.* is the standard deviation of *Elevation*. *Potato*, *Wheat*, *Maize*, *Sunflower* and *Barley* refer to the soil suitability for potato, wheat, maize, sunflower and barley production, respectively. *Population* is the municipality’s population in 1866. *Pop. Density* is *Population* divided by its area (in square km). *River Length* is the total length of all rivers in a municipality. *Road Length* is the total length of all historical roads in a municipality. *Grazing Land* is the size of the area in a municipality that is used for grazing. *Cropland* is the size of the area in a municipality that is used for crop production. *Railway Station* is a dummy variable whether a municipality has a railway station. *Railway Quality* is a 4-stage variable measuring the quality of the railway infrastructure. Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy and distance to Mulhouse and segment-fixed effects. Standard errors are clustered on the cantonal level. The bandwidth is optimally selected in regards to the Mean Square Error (Calonico et al. 2017). Only if the bandwidth falls below 10km, we set 10km as the bandwidth. Standard errors are in brackets and p-values are positioned below them.
Table E.2: RD Smoothness Test: 1860 Economic Indicators (Level of Arrondisment)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean (Treatment)</th>
<th>Mean (Control)</th>
<th>T-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share Children</td>
<td>0.052</td>
<td>0.050</td>
<td>0.875</td>
</tr>
<tr>
<td>Income PC</td>
<td>178.353</td>
<td>187.329</td>
<td>0.387</td>
</tr>
<tr>
<td>Worker Productivity</td>
<td>6625.835</td>
<td>6968.153</td>
<td>0.728</td>
</tr>
<tr>
<td>Firm Productivity</td>
<td>1.30e+05</td>
<td>98487.290</td>
<td>0.418</td>
</tr>
</tbody>
</table>

Sources: This table shows the t-test for four variables measuring economic conditions on the arrondisment-level in the region of Lorraine. The data set comprises of seven arrondisments in the control and five arrondisments in the treatment group. *Share Children* measures the share of children in the workforce. *Income PC* is the average income of a worker in the arrondisment. *Worker Productivity* measures the average production output per worker. *Firm Productivity* shows the average production output per firm.
Table E.3: Smoothness: Post-Treatment Variables

<table>
<thead>
<tr>
<th></th>
<th>Educ. 99</th>
<th>Age 06</th>
<th>Occup. 06</th>
<th>Income 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>0.003</td>
<td>-0.547</td>
<td>0.016</td>
<td>1063.636</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.484)</td>
<td>(0.015)</td>
<td>(858.687)</td>
</tr>
<tr>
<td></td>
<td>[0.411]</td>
<td>[0.259]</td>
<td>[0.283]</td>
<td>[0.215]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>10.473</td>
<td>18.132</td>
<td>10.663</td>
<td>14.355</td>
</tr>
<tr>
<td>Observations</td>
<td>646</td>
<td>1078</td>
<td>658</td>
<td>723</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Health Care</th>
<th>High School</th>
<th>Voc. School</th>
<th>Post Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>0.011</td>
<td>-0.003</td>
<td>0.001</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.043)</td>
</tr>
<tr>
<td></td>
<td>[0.403]</td>
<td>[0.598]</td>
<td>[0.903]</td>
<td>[0.637]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>22.388</td>
<td>10.445</td>
<td>14.179</td>
<td>10.000</td>
</tr>
<tr>
<td>Observations</td>
<td>1270</td>
<td>627</td>
<td>848</td>
<td>604</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>-192.756</td>
<td>-57.978</td>
<td>46.097</td>
<td>71.715</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[190.986]</td>
<td>[99.369]</td>
<td>[53.388]</td>
<td>[50.219]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.313</td>
<td>0.560</td>
<td>0.388</td>
<td>0.153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.000</td>
<td>10.354</td>
<td>14.332</td>
<td>22.078</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>618</td>
<td>633</td>
<td>871</td>
<td>1275</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table shows tests for discontinuities in covariates using all départements in Alsace and Lorraine. Age 06 is the average (self-reported) age in 2006 and Income 08 is the median income in 2008. Educ. 99 refers to the share of people above 15 with a high school degree in 1999 and Occup. 06 is the share of blue-collar workers in the total population in 2006. High School, Voc. School, Post Office, and Health Care measure the relative number of high schools with general and/or technological education, secondary schools with vocational training, post offices and health care establishments for medium-term stays per 1,000 inhabitants in 2013. Population Change measures the change in municipal population over four periods with different start years (1866, 1916, 1926, 1936) and one end year (1946). Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy, distance to Mulhouse and five segment-fixed effects (one of those as reference category). The bandwidth is optimally selected with regards to the mean square error criterion (Calonico et al. 2017). Standard errors are clustered at the cantonal level.
Table E.4: RD Specification - No Controls

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Yes Share 1992</th>
<th>Yes Share 2005</th>
<th>Yes Share 92 & 05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>(1) 5.029</td>
<td>(2) 5.990</td>
<td>(3) 2.255</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>(2.132)</td>
<td>(1.996)</td>
<td>(2.820)</td>
</tr>
<tr>
<td>Observations</td>
<td>[0.018]</td>
<td>[0.003]</td>
<td>[0.424]</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>10.000</td>
<td>19.866</td>
<td>10.000</td>
</tr>
<tr>
<td>Observations</td>
<td>619</td>
<td>1162</td>
<td>618</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>52.62</td>
<td>53.47</td>
<td>43.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Eurosceptic Parties w/o Front National</th>
<th>Euroscepticism Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (km)</td>
<td>(0.966)</td>
<td>(0.704)</td>
</tr>
<tr>
<td>Observations</td>
<td>[0.135]</td>
<td>[0.002]</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>10.000</td>
<td>22.659</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>1855</td>
<td>3930</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>14.62</td>
<td>14.31</td>
</tr>
</tbody>
</table>

Notes: Discontinuity at the treatment border using municipalities in Alsace and Lorraine. In Panel A, the outcome is the share of people voting “Yes” in the referendum on the Maastricht Treaty in 1992 and the French European Constitution Referendum in 2005. In Panel B, the outcome in Columns 1 and 2 is the share of people voting for eurosceptic parties in European parliamentary elections between 1994 and 2004. An eurosceptic party is defined by having a higher negativity than positivity score in regards to the European Union in their published manifestos between 1992 and 2003. The outcome in Column 3 and 4 is adapted to exclude the vote share for the party Front National. In Column 5 and 6 an index capturing euroscepticism is used, which is a weighted vote share of eurosceptic parties. Weighting occurs by multiplying the vote share with the euro-negativity score. Standard errors are clustered at the cantonal level. Standard errors are displayed in brackets and p-values are right below them. For each outcome, in left column the regression is run using a narrow bandwidth of 10km, while the optimal bandwidth in the right column is selected with regards to the mean square error criterion (Calonico et al. 2017).
Table E.5: RD Specification - No Clusters

Panel A
EU Support (1992 and 2005)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Yes Share 1992</th>
<th>Yes Share 2005</th>
<th>Yes Share 92 & 05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>5.242</td>
<td>2.787</td>
<td>4.012</td>
</tr>
<tr>
<td></td>
<td>(1.544)</td>
<td>(1.606)</td>
<td>(1.275)</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>10.000</td>
<td>10.000</td>
<td>10.000</td>
</tr>
<tr>
<td>Observations</td>
<td>619</td>
<td>618</td>
<td>1237</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>52.62</td>
<td>43.51</td>
<td>48.07</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Eurosceptic Parties</th>
<th>w/o Front National</th>
<th>Euroscepticism Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>-1.086</td>
<td>-1.873</td>
<td>-3.172</td>
</tr>
<tr>
<td></td>
<td>(1.184)</td>
<td>(1.008)</td>
<td>(1.646)</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>10.000</td>
<td>10.000</td>
<td>10.000</td>
</tr>
<tr>
<td>Observations</td>
<td>1855</td>
<td>1855</td>
<td>1855</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>14.62</td>
<td>7.51</td>
<td>7.00</td>
</tr>
</tbody>
</table>

Notes: Discontinuity at the treatment border using municipalities in Alsace and Lorraine. In Panel A, the outcome is the share of people voting “Yes” in the referendum on the Maastricht Treaty in 1992 and the French European Constitution Referendum in 2005. In Panel B, the outcome in Columns 1 and 2 is the share of people voting for eurosceptic parties in European parliamentary elections between 1994 and 2004. An eurosceptic party is defined by having a higher negativity than positivity score in regards to the European Union in their published manifestos between 1992 and 2003. The outcome in Column 3 and 4 is adapted to exclude the vote share for the party Front National. In Column 5 and 6 an index capturing euroscepticism is used, which is a weighted vote share of eurosceptic parties. Weighting occurs by multiplying the vote share with the euro-negativity score. Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy, distance to Mulhouse and segment-fixed effects. Standard errors are displayed in brackets and p-values are right below them. For each outcome, in left column the regression is run using a narrow bandwidth of 10km, while the optimal bandwidth in the right column is selected with regards to the mean square error criterion (Calonico et al. 2017).
Table E.6: RD Specification - Baseline Plus Pre-Treatment Controls

Panel A
EU Support (1992 and 2005)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Yes Share 1992 (1)</th>
<th>Yes Share 2005 (2)</th>
<th>Yes Share 92 & 05 (3)</th>
<th>Yes Share 92 & 05 (4)</th>
<th>Yes Share 92 & 05 (5)</th>
<th>Yes Share 92 & 05 (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>5.858 (1.489)</td>
<td>3.219 (1.876)</td>
<td>4.534 (1.211)</td>
<td>4.620 (1.187)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(km)</td>
<td>10.000 (0.000)</td>
<td>10.000 (0.000)</td>
<td>10.000 (0.000)</td>
<td>10.000 (0.000)</td>
<td>12.362 (0.000)</td>
<td>12.362 (0.000)</td>
</tr>
<tr>
<td>Observations</td>
<td>614</td>
<td>613</td>
<td>1227</td>
<td>1487</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>52.62</td>
<td>43.51</td>
<td>48.07</td>
<td>48.35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B
Euroscepticism (1994, 1999 and 2004)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Eurosceptic Parties (1)</th>
<th>Eurosceptic Parties w/o Front National (2)</th>
<th>Euroscepticism Index (3)</th>
<th>Euroscepticism Index (4)</th>
<th>Euroscepticism Index (5)</th>
<th>Euroscepticism Index (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>-1.201 (0.715)</td>
<td>-2.022 (0.673)</td>
<td>-3.363 (2.043)</td>
<td>-4.245 (1.823)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(km)</td>
<td>10.000 (0.001)</td>
<td>18.893 (0.003)</td>
<td>10.000 (0.100)</td>
<td>14.057 (0.020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1840</td>
<td>1840</td>
<td>1840</td>
<td>1840</td>
<td>2551</td>
<td>2551</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>14.62</td>
<td>14.35</td>
<td>7.51</td>
<td>7.17</td>
<td>25.41</td>
<td>25.20</td>
</tr>
</tbody>
</table>

Notes: Discontinuity at the treatment border using municipalities in Alsace and Lorraine. In Panel A, the outcome is the share of people voting “Yes” in the referendum on the Maastricht Treaty in 1992 and the French European Constitution Referendum in 2005. In Panel B, the outcome in Columns 1 and 2 is the share of people voting for eurosceptic parties in European parliamentary elections between 1994 and 2004. An eurosceptic party is defined by having a higher negativity than positivity score in regards to the European Union in their published manifestos between 1992 and 2003. The outcome in Column 3 and 4 is adapted to exclude the vote share for the party Front National. In Column 5 and 6 an index capturing euroscepticism is used, which is a weighted vote share of eurosceptic parties. Weighting occurs by multiplying the vote share with the euro-negativity score. Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy, distance to Mulhouse and segment-fixed effects, as well as all variables used in the pre-treatment balance test. Standard errors are clustered at the cantonal level. Standard errors are displayed in brackets and p-values are right below them. For each outcome, in left column the regression is run using a narrow bandwidth of 10km, while the optimal bandwidth in the right column is selected with regards to the mean square error criterion (Calonico et al. 2017).
Table E.7: RD Specification - Coordinate Controls

Panel A

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Yes Share 1992 (1)</th>
<th>Yes Share 2005 (2)</th>
<th>Yes Share 92 & 05 (3)</th>
<th>Yes Share 1992 (4)</th>
<th>Yes Share 2005 (5)</th>
<th>Yes Share 92 & 05 (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>5.071</td>
<td>2.251</td>
<td>3.661</td>
<td>4.113</td>
<td>2.049</td>
<td>3.809</td>
</tr>
<tr>
<td></td>
<td>(1.749)</td>
<td>(2.109)</td>
<td>(1.365)</td>
<td>(1.749)</td>
<td>(1.936)</td>
<td>(1.278)</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>10.000</td>
<td>10.000</td>
<td>10.000</td>
<td>10.000</td>
<td>10.000</td>
<td>10.000</td>
</tr>
<tr>
<td>Observations</td>
<td>619</td>
<td>618</td>
<td>743</td>
<td>1237</td>
<td>1695</td>
<td></td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>52.62</td>
<td>43.51</td>
<td>48.07</td>
<td>53.09</td>
<td>43.78</td>
<td>48.61</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Eurosceptic Parties (1)</th>
<th>Eurosceptic Parties w/o Front National (2)</th>
<th>Euroscepticism Index (3)</th>
<th>Euroscepticism Index (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>-1.025</td>
<td>-1.725</td>
<td>-2.174</td>
<td>-2.656</td>
</tr>
<tr>
<td></td>
<td>(0.705)</td>
<td>(0.669)</td>
<td>(0.629)</td>
<td>(2.086)</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>10.000</td>
<td>10.000</td>
<td>18.464</td>
<td>16.300</td>
</tr>
<tr>
<td>Observations</td>
<td>1855</td>
<td>1855</td>
<td>1855</td>
<td>2904</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>14.62</td>
<td>14.43</td>
<td>7.51</td>
<td>25.41</td>
</tr>
</tbody>
</table>

Notes: Discontinuity at the treatment border using municipalities in Alsace and Lorraine. In Panel A, the outcomes is the share of people voting “Yes” in the referendum on the Maastricht Treaty in 1992 and the French European Constitution Referendum in 2005. In Panel B, the outcome in Columns 1 and 2 is the share of people voting for eurosceptic parties in European parliamentary elections between 1994 and 2004. An eurosceptic party is defined by having a higher negativity than positivity score in regards to the European Union in their published manifestos between 1992 and 2003. The outcome in Column 3 and 4 is adapted to exclude the vote share for the party Front National. In Column 5 and 6 an index capturing euroscepticism is used, which is a weighted vote share of eurosceptic parties. Weighting occurs by multiplying the vote share with the euro-negativity score. Included controls: the coordinates on the x- and y-axis and segment-fixed effects. Standard errors are clustered at the cantonal level. Standard errors are displayed in brackets and p-values are right below them. For each outcome, in left column the regression is run using a narrow bandwidth of 10km, while the optimal bandwidth in the right column is selected with regards to the mean square error criterion (Calonico et al. 2017).
Figure E.1: Robustness Check: Bandwidth Choice

Yes Share 1992

Yes Share 2005

Yes Share 1992 and 2005

Eurosceptic Parties

w/o Front National

Euroscepticism Index

Notes: Discontinuity at the treatment border using all Municipalities in Alsace and Lorraine. The treatment effect for the main variables capturing EU support and Euroscepticism using a range of bandwidths smaller and larger than the MSE-optimal bandwidth (Calonica et al., 2018). Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy and distance to Mulhouse and segment-fixed effects. Standard errors are clustered at the cantonal level.
Table E.8: Nested Identities: EU, National and Regional Level (all of France; Extensive Table)

<table>
<thead>
<tr>
<th>Panel A</th>
<th>Strength of Identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Regional Identity</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>0.192</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
</tr>
<tr>
<td>Observations</td>
<td>49999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>Relationship between Nested Identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Regional Identity</td>
</tr>
<tr>
<td>Variable of Interest</td>
<td>French Identity</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>0.723</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
</tr>
<tr>
<td>Variable of Interest</td>
<td>0.368</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
</tr>
<tr>
<td>Interaction</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
</tr>
<tr>
<td></td>
<td>[0.020]</td>
</tr>
<tr>
<td>Observations</td>
<td>49936</td>
</tr>
</tbody>
</table>

Sources: Individual-level survey data. Observatoire Interregional du Politique (OIP). “X” Identity: “Could you tell me whether you feel very attached, rather attached, not very attached or not attached at all to X?” The higher the value the more attached the respondent is to X. X refers to Europe, the nation (France in this case) and the region, asked in separate questions. Regressions control for age, employment status, education and sex. Standard errors in brackets and p-values right below. All outcome variables are standardized with mean zero.
Table E.9: Nested Identities: EU, National, and Regional Level (Alsace & Lorraine; Extensive Table)

<table>
<thead>
<tr>
<th>Panel A</th>
<th>Strength of Identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Regional Identity</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>0.179</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
</tr>
<tr>
<td>Observations</td>
<td>5620</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>Relationship between Nested Identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Regional Identity</td>
</tr>
<tr>
<td>Variable of Interest</td>
<td>French Identity</td>
</tr>
<tr>
<td>Variable of Interest</td>
<td>0.426</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
</tr>
<tr>
<td></td>
<td>[0.013]</td>
</tr>
<tr>
<td>Interaction</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
</tr>
<tr>
<td></td>
<td>[0.941]</td>
</tr>
<tr>
<td>Observations</td>
<td>5611</td>
</tr>
</tbody>
</table>

Sources: Individual-level survey data. Observatoire Interregional du Politique (OIP). “X” Identity: “Could you tell me whether you feel very attached, rather attached, not very attached or not attached at all to X?” The higher the value the more attached the respondent is to X. X refers to Europe, the nation (France in this case) and the region, asked in separate questions. Regressions control for age, employment status, education and sex. Standard errors in brackets and p-values right below. All outcome variables are standardized with mean zero.
Table E.10: Demographic Interactions

<table>
<thead>
<tr>
<th>Variable of Interest</th>
<th>European Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>0.169</td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
</tr>
<tr>
<td></td>
<td>[0.043]</td>
</tr>
<tr>
<td>Variable of Interest</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
</tr>
<tr>
<td>Treatment X V.o.I.</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td></td>
<td>[0.164]</td>
</tr>
</tbody>
</table>

Notes: Individual-level survey data. Observatoire Interregional du Politique (OIP) in 1995, 1997, 1999 and 2001. European Identity: “Could you tell me whether you feel very attached, rather attached, not very attached or not attached at all to Europe?” The higher the value the more attached the respondent is to Europe. Age measures your age in years. Experience is a binary variable indicating whether the respondent was at least 10 years old in 1945. Sex captures the respondent’s sex (0 = male; 1 = female). Education measures whether someone finished an education higher than high school. Controls included: age, experience, education, sex and employment status. Standard errors in brackets and p-values right below. All outcome variables are standardized with mean zero.

Table E.11: RD Specification - Turnout Referendum 1992 & 2005

<table>
<thead>
<tr>
<th>Turnout 1992</th>
<th>Turnout 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>-1.270</td>
</tr>
<tr>
<td></td>
<td>(1.038)</td>
</tr>
<tr>
<td></td>
<td>[0.221]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>10.000</td>
</tr>
<tr>
<td>Observations</td>
<td>619</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>73.76</td>
</tr>
</tbody>
</table>

Notes: Discontinuity at the treatment border using municipalities in Alsace and Lorraine. The outcome is the turnout in the referendum on the Maastricht Treaty in 1992 and the French European Constitution Referendum in 2005. Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy, distance to Mulhouse and segment-fixed effects. Standard errors are clustered at the cantonal level. Standard errors are displayed in brackets and p-values are right below them. For each outcome, in left column the regression is run using a narrow bandwidth of 10km, while the optimal bandwidth in the right column is selected with regards to the mean square error criterion (Calonico et al. 2017).
Table E.12: OLS Results - EU Support and Euroscepticism (1992 - 2005)

Panel A EU Support (Share Yes-Votes 1992 and 2005)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>6.665</td>
<td>6.617</td>
<td>6.626</td>
</tr>
<tr>
<td>(1.401)</td>
<td></td>
<td>(1.421)</td>
<td>(1.077)</td>
</tr>
<tr>
<td>[0.000]</td>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Observations</td>
<td>3230</td>
<td>3235</td>
<td>6465</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>53.59</td>
<td>45.65</td>
<td>49.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Eurosceptic Parties</th>
<th>w/o Front National</th>
<th>Eurosceptism Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment vs. Control</td>
<td>-2.226</td>
<td>-2.588</td>
<td>-6.155</td>
</tr>
<tr>
<td>(0.514)</td>
<td>(0.555)</td>
<td>(1.542)</td>
<td></td>
</tr>
<tr>
<td>[0.000]</td>
<td>[0.000]</td>
<td>[0.000]</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>9698</td>
<td>9698</td>
<td>9698</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>13.99</td>
<td>6.55</td>
<td>23.40</td>
</tr>
</tbody>
</table>

Notes: Comparison of treated and untreated municipalities in Alsace and Lorraine. In Panel A, the outcome is the share of people voting “Yes” in the referendum on the Maastricht Treaty in 1992 and the French European Constitution Referendum in 2005. In Panel B, the outcome in Columns 1 and 2 is the share of people voting for eurosceptic parties in European parliamentary elections between 1994 and 2004. An eurosceptic party is defined by having a higher negativity than positivity score in regards to the European Union in their published manifestos between 1992 and 2003. The outcome in Column 3 and 4 is adapted to exclude the vote share for the party Front National. In Column 5 and 6 an index capturing euroscepticism is used, which is a weighted vote share of eurosceptic parties. Weighting occurs by multiplying the vote share with the euro-negativity score. Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy, distance to Mulhouse and 5 segment-fixed effects (one of those as reference category). Standard errors are clustered at the cantonal level. Standard errors are displayed in brackets and p-values are right below them.
Table E.13: RD Specification - Robustness to Linguistic Border

<table>
<thead>
<tr>
<th></th>
<th>EU Support</th>
<th></th>
<th>Euroscepticism</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Modified</td>
<td>Baseline</td>
<td>Modified</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>3.586</td>
<td>3.422</td>
<td>-1.489</td>
<td>-1.573</td>
</tr>
<tr>
<td></td>
<td>(1.329)</td>
<td>(1.446)</td>
<td>(0.604)</td>
<td>(0.668)</td>
</tr>
<tr>
<td></td>
<td>[0.007]</td>
<td>[0.018]</td>
<td>[0.014]</td>
<td>[0.019]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>14.529</td>
<td>22.997</td>
<td>16.179</td>
<td>22.430</td>
</tr>
<tr>
<td>Observations</td>
<td>1755</td>
<td>1709</td>
<td>2898</td>
<td>2496</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>48.69</td>
<td>48.66</td>
<td>14.43</td>
<td>14.49</td>
</tr>
</tbody>
</table>

Notes: Discontinuity at the baseline and modified treatment border using municipalities in Alsace and Lorraine. The outcome “EU Support” is the share of people voting “Yes” in the referendum on the Maastricht Treaty in 1992 and the French European Constitution Referendum in 2005. The outcome “Euroscepticism” the share of people voting for eurosceptic parties in European parliamentary elections between 1994 and 2004. For each outcome, the regression is run once with the complete border (left) and once with a shorter border, having removed the sections overlapping with the language border and those border sections with no counterfactuals on the other side. The optimal bandwidth is selected with regards to the mean square error criterion (Calonico et al. 2017). Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy and distance to Mulhouse.
Table E.14: RD Specification - Placebo Borders

<table>
<thead>
<tr>
<th></th>
<th>Placebo Border (a)</th>
<th></th>
<th>Placebo Border (b)</th>
<th></th>
<th>Placebo Border (c)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EU Support</td>
<td>Euroscepticism</td>
<td>EU Support</td>
<td>Euroscepticism</td>
<td>EU Support</td>
<td>Euroscepticism</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>0.056</td>
<td>-0.386</td>
<td>-0.114</td>
<td>-0.386</td>
<td>1.636</td>
<td>-1.073</td>
</tr>
<tr>
<td></td>
<td>(0.678)</td>
<td>(0.330)</td>
<td>(1.692)</td>
<td>(0.762)</td>
<td>(1.357)</td>
<td>(0.768)</td>
</tr>
<tr>
<td></td>
<td>[0.934]</td>
<td>[0.243]</td>
<td>[0.946]</td>
<td>[0.613]</td>
<td>[0.228]</td>
<td>[0.162]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>14.673</td>
<td>16.719</td>
<td>10.000</td>
<td>10.000</td>
<td>24.840</td>
<td>26.194</td>
</tr>
<tr>
<td>Observations</td>
<td>14386</td>
<td>24169</td>
<td>511</td>
<td>768</td>
<td>1799</td>
<td>2827</td>
</tr>
<tr>
<td>Mean of Outcome</td>
<td>42.68</td>
<td>14.10</td>
<td>48.17</td>
<td>14.71</td>
<td>43.25</td>
<td>14.66</td>
</tr>
</tbody>
</table>

Notes: Map (a) in Figure 8 shows the départements at the French border (black) and their adjacent départements (grey). This excludes the départements that constitute Alsace and Lorraine and the second-row département Haute Marne. Haute Marne has no counterfactual on the first-row side due to this exclusion of the Alsace and Lorraine regions. The border separating first and second row départements is used as a placebo border (bold orange line). Map (b) in Figure 8 displays the border between the former départements Meurthe and Moselle before 1871 (bold orange line). Map (c) in Figure 8 shows the border between the départements composing the control area in the main regression and their adjacent départements inland (bold orange line). This table displays the local treatment effect at these borders for the two main outcomes EU Support is the share of people voting “Yes” in the referendum on the Maastricht Treaty in 1992 and the French European Constitution Referendum in 2005. Euroscepticism is the share of people voting for eurosceptic parties in European parliamentary elections between 1994 and 2004. The optimal bandwidth is selected with regards to the mean square error criterion (Calonico et al. 2017). Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy and distance to Mulhouse.
Table E.15: RD Results - EU Support (1992 - 2005) - Full Specification

EU Support (Share Yes-Votes 1992 and 2005)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>5.242</td>
<td>6.254</td>
<td>2.787</td>
</tr>
<tr>
<td></td>
<td>(1.853)</td>
<td>(1.901)</td>
<td>(2.029)</td>
</tr>
<tr>
<td></td>
<td>[0.006]</td>
<td>[0.001]</td>
<td>[0.174]</td>
</tr>
<tr>
<td>Distance to Germany</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>[0.063]</td>
<td>[0.037]</td>
<td>[0.022]</td>
</tr>
<tr>
<td>Distance to Metz</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>[0.876]</td>
<td>[0.491]</td>
<td>[0.406]</td>
</tr>
<tr>
<td>Distance to Strasbourg</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>[0.970]</td>
<td>[0.904]</td>
<td>[0.007]</td>
</tr>
<tr>
<td>Distance to Nancy</td>
<td>0.000</td>
<td>-0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>[0.799]</td>
<td>[0.880]</td>
<td>[0.118]</td>
</tr>
<tr>
<td>Distance to Mulhouse</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>[0.484]</td>
<td>[0.193]</td>
<td>[0.039]</td>
</tr>
<tr>
<td></td>
<td>[0.629]</td>
<td>[0.555]</td>
<td>[0.072]</td>
</tr>
<tr>
<td>Border Segment 2</td>
<td>-4.681</td>
<td>-5.711</td>
<td>9.666</td>
</tr>
<tr>
<td></td>
<td>[0.552]</td>
<td>[0.398]</td>
<td>[0.128]</td>
</tr>
<tr>
<td>Border Segment 3</td>
<td>-8.411</td>
<td>-8.475</td>
<td>11.953</td>
</tr>
<tr>
<td></td>
<td>(6.805)</td>
<td>(5.841)</td>
<td>(4.809)</td>
</tr>
<tr>
<td></td>
<td>[0.221]</td>
<td>[0.150]</td>
<td>[0.015]</td>
</tr>
<tr>
<td></td>
<td>(4.616)</td>
<td>(3.827)</td>
<td>(3.651)</td>
</tr>
<tr>
<td></td>
<td>[0.390]</td>
<td>[0.215]</td>
<td>[0.005]</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>10.000</td>
<td>13.419</td>
<td>10.000</td>
</tr>
<tr>
<td>Observations</td>
<td>619</td>
<td>813</td>
<td>618</td>
</tr>
</tbody>
</table>

Notes: Discontinuity at the treatment border using municipalities in Alsace and Lorraine. The outcome is the share of people voting “Yes” in the referendum on the Maastricht Treaty in 1992 and the French European Constitution Referendum in 2005. Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy, distance to Mulhouse and 5 segment-fixed effects (one of those as reference category). Standard errors are clustered at the cantonal level. Standard errors are displayed in brackets and p-values are right below them. For each outcome, in left column the regression is run using a narrow bandwidth of 10km, while the optimal bandwidth in the right column is selected with regards to the mean square error criterion (Calonico et al. 2017).
Table E.16: RD Results - Euroscepticism (1992 - 2005) - Full Specification

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Eurosceptic Parties w/o Front National</th>
<th>Euroscepticism Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Treatment vs. Control</td>
<td>-1.086 (0.727)</td>
<td>-1.735 (0.644)</td>
</tr>
<tr>
<td>Distance to Germany</td>
<td>-0.000 (0.000)</td>
<td>-0.000 (0.000)</td>
</tr>
<tr>
<td>Distance to Metz</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
</tr>
<tr>
<td>Distance to Strasbourg</td>
<td>-0.000 (0.000)</td>
<td>-0.000 (0.000)</td>
</tr>
<tr>
<td>Distance to Nancy</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
</tr>
<tr>
<td>Distance to Mulhouse</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
</tr>
<tr>
<td>Border Segment 1</td>
<td>0.677 (2.388)</td>
<td>-0.371 (2.033)</td>
</tr>
<tr>
<td>Border Segment 2</td>
<td>-0.801 (2.334)</td>
<td>-1.510 (1.970)</td>
</tr>
<tr>
<td>Border Segment 3</td>
<td>0.284 (0.732)</td>
<td>0.005 (0.445)</td>
</tr>
<tr>
<td>Border Segment 4</td>
<td>-1.190 (2.076)</td>
<td>-1.769 (1.687)</td>
</tr>
<tr>
<td>Bandwidth (km)</td>
<td>10.000 (1.613)</td>
<td>14.369 (1.104)</td>
</tr>
<tr>
<td>Observations</td>
<td>1855 (0.463)</td>
<td>2623 (0.112)</td>
</tr>
</tbody>
</table>

Notes: Discontinuity at the treatment border using municipalities in Alsace and Lorraine. The outcomes in Columns 1 is the share of people voting for eurosceptic parties in European parliamentary elections between 1994 and 2004. An eurosceptic party is defined by having a higher negativity than positivity score in regards to the European Union in their published manifestos between 1992 and 2003. The outcome in Column 3 and 4 is adapted to exclude the vote share for the party Front National. In Column 5 and 6 an index capturing euroscepticism is used, which is a weighted vote share of eurosceptic parties. Weighting occurs by multiplying the vote share with the euro-negativity score. Included controls: distance to Germany (border), distance to Metz, distance to Strasbourg, distance to Nancy, distance to Mulhouse and 5 segment-fixed effects (one of those as reference category). Standard errors are clustered at the cantonal level. Standard errors are displayed in brackets and p-values are right below them. For each outcome, in left column the regression is run using a narrow bandwidth of 10km, while the optimal bandwidth in the right column is selected with regards to the mean square error criterion (Calonico et al. 2017).